

IVERSITY OF CALIFORMIA

LIBRARY OF THE UNIVERSITY OF CALIFORNIA

LIbrary of the university of califormia

LIbrary of the university of california

> LIBRARY OF THE UNIVERSITY OF GALIFORMIA

libraby of the university of california

Llbraby of the university of california

llbraby of the university of califormia

LIBRARY OF THE UNIVERSITY OF GALIFORNIA

libraby of the university of califormia

Libraby of the university of califormia

LIBRARY OF THE UNIVERSITY OF CALIFORMIA

-

GEORGETOWN COLLEGE OBSERVATORY.

OBSERVATIONS OF VARIABLE STARS

MADE IN THE YEARS 1884-1890.

PART I.

THE OBSERVATIONS.
J. G. HAGEN, S. J.,

Director of the Georgetown College Observatory.

ASTRONOMY
cal. or Clawom

INTRODUCTION.

The following observations were made from 1884 to 1890 by myself and several assistants, first in Prairie Du Chien, Wisconsin, and later in Washington. They were generally confined to the brighter variables, as the instruments used were opera glasses and equatorials of 3 or 5 inches aperture. The earlier observations will show some lack of experience both in their arrangement and in the choice of snitable variables and comparison stars. But the very difficulties encountered in these observations bore ample fruit by showing the necessity of an Atlas of Variable Stars, and by developing and maturing a plan for its construction. As a matter of fact the observations were only discontinued to begin work on the Atlas, in January, 1890, when a donation for a larger instrument was received by the Observatory.

A glance at the observations will show that two methods were employed, viz., the "decimal method" for the first three years, and the "method by steps" for the last three. In the former method the brightness of the variable is estimated in tenths of the interval between two comparison stars; in the latter, usually designated as Argelander's, it is estimated in steps from both comparison stars. The decimal method supposes a well established photometric scale of comparison stars, while the latter rests upon a subjective "step" or unit of light difference. Each method has its own difficulty in the want of constancy of its basis. Experience shows that a large proportion of the stars vary slightly in brightness. Hence any photometric scale must contain on account of this variation what are equivalently accidental errors, however much its constructor may have endeavored to free it from systematic and accidental errors on his own part. On the other hand the "step" is so far from being a constant quantity, that Argelander himself introduced the technical term of the "step value of the evening."

The observations as published show first the original estimates, and then their reduction to a fixed scale either of steps or of photometric magnitudes. Wherever the observations by steps furnished sufficient data, a scale of steps was constructed for all the observations, even those made by the decimal method. This may not be perfectly correct, as the value of the steps may, either in general or for single stars, change in the course of years. Yet it has seemed preferable to make the reductions uniform throughout.

For these reductions of the original extimates to a scale of steps Schönfeld has recommended the use of both the arithmetical and the geometrical proportion. The former is supposed to eliminate erroneous estimates in the actual brightness of the several stars, and the latter removes the difference of the step value of the evening from the assumed mean value. Schöenfeld then advises the taking of the arithmetical mean of the two results thus obtained (Wien, Sitzungsber. vol. 42, p. 154), with a reference to Argelander in Schamacher's Jahrbuch (1844 p. 232). The two proportions may be expressed in algebraic form as follows. Let the observed sequence be : $a \mathrm{~m} \mathrm{R} \mathrm{n} \mathrm{b}$,
a being the brighter and b the fainter comparison star for the variable R, and let the steps be counted in the same direction as the magnitudes, viz. increasing from the brighter to the fainter stars, then :

$$
\begin{align*}
& R=\frac{(a+\mathrm{m})+(b-\mathrm{n})}{2} \tag{I}\\
& R=b-\mathrm{n} \frac{b-a}{\mathrm{n}+\mathrm{m}}=a+\mathrm{m} \frac{b-a}{\mathrm{n}+\mathrm{m}} \tag{II}
\end{align*}
$$

In the latter formula, which uses geometrical proportion, the fraction is what Argelander has called "the step value of the evening."

After these general remarks a few explanations will be required regarding the comparison stars and the observations.

The titles are taken substantially from Chandler's III. Catalogue.
In the tables of comparison stars under the heading "Obs." the letters are given which were used to designate the stars in the observations, and under the next $A S V$. their numbers in the catalogues accompanying the charts of the Atlas. The "Series" in which the variable is contained is mentioned above with the title. When the variable belongs to the IV. Series, the column is left blank for future insertion. $B D$. means the Bonn "Durchmusterung" number. The Sleps were not taken from the Atlas, but derived in the usual way from the observations themselves, except in a few cases which will be specially mentioned. As to the last column, headed "Magn." the following principles have been followed according to the Series of the Atlas to which the variable belongs. For the stars of Series I, II, III the magnitudes are those computed for the Atlas. When a particular comparison star is not found in the Atlas, because lying outside the chart, the BD, magnitude is given in parenthesis. For stars of Series IV, which is not yet published, the BD. magnitudes are given. The catalogues of Series V contain three columns of photometric magnitudes. Here, however, instead of giving the mean of these it was thought best to take the H. P. magnitudes alone.

The table of comparison stars is followed by a few explanatory Notes.
The columns of the Observations require but a few remarks. The four numbers I-IV under Sky are the usual notation for the transparency of the sky, I denoting very good, and IV bad. Disturbing moonlight (not the age of the moon) is denoted in three intensities, by one, two or three signs D.

The passage from the decimal method to that by steps is pointed out in the column Comparisons. For the decimal method, moreover, an abbreviated notation has been used, whose different appearance makes the change of method obvious. Thus the first observation of U Cephei is : $b 3 c$, which is abbreviated from : $b 3 \mathrm{U} 7 c$, and means that the variable U is 0.3 of the interval $c-b$ fainter than b, or 0.7 brighter than c. The rule of abbreviation is, that the second figure (the complement of the first to 10) and the letter of the variable, are always omitted. Consequently the notations: $d 0 n, a 10 d$ mean: $d 0 \mathrm{U} 10 n$, a $10 \mathrm{U} 0 d$, or that the variable is equal to d. Evidently the decimal method coincides with that by steps, whenever the observer estimates 10 steps between the two comparison stars. In the same column the signs ! and ? are not later insertions, but indicate certainty or doubt at the time of observation. The different seasons of observations are separated by horizontal lines, to make the discontinuity of the light curve more apparent to the eye.

The headings $I, I I$ and Mean, refer to the two formulas given above. It is evident, that only the geometrical proportion (formula II) can be applied to the decimal method. Numbers in parenthesis mean that they have been found to bear internal evidence of erroneous or poor observation. They have generally received one-half of the weight of the others. Attention must be called to the use of the signs $>$ and <in the columns headed : Comparisons and Mean. In the former column the notation $\mathrm{T}<c$ for example means that the variable T is fainter than the comparison star c. If the step assigned to c is e. g. 27.8, this observation is expressed in the other column thus: >27.8, meaning that the number of steps belonging to T is greater than 27.8 .

The Remarks refer to the original record, whilst critical discussions were entered later as foot notes. That the remarks "seeing poor" or "difficult" are not contradictory to the designation I or II of the sky, is well-known to observers; they usually refer to causes not apparent in the sky.

The Julian Day and the brightness in steps from the preceding column will generally be sufficient to plot the light curves and to compute the phases and periods of the variables, except those of the Algol type. For these the hours and minutes will be needed, and can be taken from the second column.

In the column Remarks the word "Eph." denotes the ephemeris published annually in the V.J.S., and shows that the observations of the Algol stars were generally not arranged with the purpose of obtaining the exact times of the minima.

Finally mention should be made of the fact, that the copying and computing of these observations has been done by six or seven different persons at various times, and that, for this reason, small errors may have escaped notice. Larger errors have probably been detected, as they would cause a break in the sequence of the numbers.

Wasiington, D. C., December 8, 1901.

J. G. HAGEN, S. J.

I. Observations Made by J. G. Hagen, S. J., from 1884 to 1888.

These observations were made in Prairie-Du.Chien, Wisconsin, while teaching in the college there. This will explain why the time of observation was usually confined to the regular hours between 8 and $10 \mathrm{p} . \mathrm{m}$. The instrument was a 3 inch telescope by Merz, of good definition, and the eyepiece employed had a power of 25 diameters, with a field of over one degree. Many of the observations were independently repeated by a student, George Zwack, some 3 or 4 minutes later. These estimates are distinguished by the letter (Z). As an appendix to these observations are added those of Nova Aurigae made later in 1892, at the Georgetown College Observatory.

U Cephei

Series IV.
(1900) $0^{\mathrm{h}} 53^{\mathrm{m}} 23^{\mathrm{s}}\left(+5^{\mathrm{s}} .09\right) ; \quad+81^{\circ} 20^{\prime} .2\left(+0^{\prime} .33\right)$

Period: $2^{\mathrm{d}} 11^{\mathrm{h}} 49^{\mathrm{m}} \pm ;$ Variation: $7^{\mathrm{m}} 1-9^{\mathrm{m}} 2$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
b		$+81^{\circ} 13$	0.0	6.5 BD.
c		+81 18	6.5	7.6 "
e		+8130	10.7	8.3 ،
a		+8127	13.2	8.6 "
d		+8122	17.4	9.2 "
n		$+8126$	23.8	9.5 "

Notes:
This Algol star was not observed systematically with the view of obtaining complete determinations of the Minima, but rather for practice, to get a general knowledge of its variations. The observations may be utilized for the study of the light curve, now that the period is well determined.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD:

METHOD BY STEPS:

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
87 Oct. 12	$15{ }^{\text {b }} 52^{\mathrm{m}}$		d 1 U5n	18.6	18.5	18.3	10557	
			a 4 U 5 n	18.9	17.9			
،	164		d 2 U 5 n	19.1	19.2	19.2	"	
"	1613		d 2 U 5 n	19.1	19.2	18.8	"	Eph. ${ }^{\frac{1}{2} \mathrm{~h}}$ before Min.
Nov. 11	154	I	d2 2 U 4 n	19.6	19.4	19.5	587	، $\quad \frac{1}{2} \mathrm{~h}$ after Min.
"	1518	I	d 2 U 5 n	19.1	19.2	18.8	6	, ${ }_{2}$ after Min.
			a 5 U 5 n	18.5	18.5			
"	1534	"	a 4 U 0.5 d	17.1	17.0	17.1	"	
"	168	"	a 3 U 2 d	15.8	15.7	15.8	"	

782 R Arietis Series II.
(1900) $2^{\mathrm{h}} 10^{\mathrm{m}} 25^{\mathrm{s}}(+3.40) ;+24^{\mathrm{s}} \quad 35.5 \quad(+0.28)$

Period : 186.55; Variation: $8^{\frac{\mathrm{m}}{\frac{1}{2}}}-12^{\frac{\mathrm{mp}}{2}}$.
Comparison Stars :

Obs.	ASV.	BD .	Steps	Magn.
a	1	+24 ${ }^{\circ} 329$	0.0	[6.0] BD.
k	2	+23303	7.2	[6.5] BD.
g	4	+23306	15.0	8.9
b	7	+24327	18.0	9.4
f	5	+24,334	20.8	9.2
e	6	+24333	22.2	9.4
c	9	+24331	25.8	9.6
h	14	-	30.1	10.0
d	13	\cdots	31.5	10.0

Notes :
The last column indicates that comparison star b was estimated brighter with the 3 -inch telescope than with larger instruments in later years. The sequence in the Atlas is as follows: $\mathrm{g}, \mathrm{f}, \mathrm{e}, \mathrm{b}, \mathrm{c}$. Whatever the cause of the discrepancy may be, it was thought more correct to reduce the observations by the above scale, which is derived from the observations themselves.

The comparison star g was in later years suspected of slight variations.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD:

*) The two observations are contradictory.
**) b 1 h can have little weight, since the interval $\mathrm{h}-\mathrm{b}=12.1$ steps is too large.

$1800+$		Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
86 Jan.	6	15.3	III	f 4 e		21.4	22.0	09913	
	30	15.7	II-III	f 3 e		22.5		937	
				a 6 c		(15.5)	13.1		
	2	15.6	III	a 7 f		14.6			
Feb.				a 7 c		(18.1)	14.0	940	
				a 8 g		12.0			
	7	15.6	I	k 6 g		11.9	12.0	945	
		15.7	I	a 8 g		12.0			
	22			k 6 g		11.9	12.0	960	
	25	15.7	I	a 8 g k 8 g		12.0 13.4	14.8	963	
				k 78		(17.7)			
Mar.		15.7	I	k 8 g		13.4	13.4	$\begin{aligned} & 968 \\ & 971 \end{aligned}$	
	5	15.1	I	k 9 g		14.2	15.9		
	25	14.2	I			(19.2)	27.3	991	
				c 6 d		29.2	27.3	991	

METHOD BY STEPS:

* * *) The journal has R1g3f, which would at that time have been to the observer a very unusual way of recording.

$1800+$	Gr. M. 'T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
88 Jan.	16.4	I	c 1 R 3 h !	27.0	26.9	27.0	10645	Near horizon
	14.8	I	f 3 R 2 c !	23.8	23.8	23.8	648	
	14.7	I D	f 2 R 3 c	22.8	22.8	22.8	654	
Feb.	15.1	I	a 7 R 3 g	9.5	10.5	10.8	675	
			a 7 R 5 f	11.4	12.1			
	14.1	I	a 7 R 4 m	9.0 10.0	9.5	9.6	682	
Mar. $\begin{array}{r}6 \\ 13\end{array}$	14.8	I	k 4 R 3 g	11.6	11.7	11.7	703	
	14.7	I	k 5 R 3 g	12.1	12.1	12.1	710	
Aug. 12	16.1	I	k 5 R 3 g	12.1	12.1	12.1	862	" ${ }^{\text {a }}$
Sept. 6	15.3	I	R 4 g	11.0		11.0	887	، ،
Oct. 7	16.8	I	b $2 \underset{\text { R }}{\text { R }}$ f 3 e	19.6 20.8	19.9	20.1	918	

8 I 4 S Persei Series III.

$$
(1900) \quad 2^{\mathrm{h}} 15^{\mathrm{m}} 41^{8}(+4.27) ; \quad+58^{\circ} 7^{\prime} .8\left(+0 .^{\prime} 28\right)
$$

Long period; Variation: $8_{\frac{1}{2}}^{\frac{\mathrm{L}}{2}}-12^{\mathrm{M}}$.
Comparison Stars :

Obs.	ASV.	B D.	Steps	Magn.
	1	$+58^{\circ} 471$	0.0	7.8
f	4	+58467	3.3	8.2
e	5	$+58452$	4.3	8.3
k	7	+57549	5.3	8.5
d	9	+58457	8.7	8.8
b	18	+57557	14.5	9.5
c	36	\cdots	19.1	10.9
a	38	23.1	11.0

Notes:
The records "invisible" are very important in the case of this star, as without them it would have been very difficult to prove that the period in Chandler's Cat. I. was too short.

These observations were continued in Washington for a short while. See below No. III.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean

DECIMAL METHOD:

*) The Journal has d 6 S with a correction into e 6 S ; which must have been made soon after.

(1900) $2^{\mathrm{h}} 42^{\mathrm{m}} 45^{\mathrm{s}}(+3.34) ;+17^{\circ} 5^{\prime} .5 \quad\left(+0^{\prime} .25\right)$

Period: $313^{\text {d }}$ (periodic inequal.); Variation : $8 \frac{1}{2}^{n}-9 \frac{1}{2}^{x}$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magı.
h		$+16^{\circ} 342$	0.0	7.8 BD.
g		+16346	6.7	8.7 "
e		+16345	8.7	8.6 "
c		+16348	12.7	8.8
d		+17440	14.7	8.9 "
a		+16350	18.9	9.5 "
b		+16347	22.2	9.5 "

Notes:

The comparison star g was suspected of variability, as it appeared at times decidedly fainter than e. The changes seem to depend on the season of the year, and consequently on the position of the observer.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD:

83 Sept.	26	16.6		e 3 d	10.5	10.5	09080
	30	15.8	I	e 4 d	11.1	11.1	084
Oct.	6	15.4	I	e 8 d	13.5	13.5	090
Nov.	1	15.4	I	e 8 d	13.5	13.5	116
	3	15.0	I	d 4 a !	16.4	16.4	118
	6	15.1	II D	e 8 d !	13.5	13.5	121
	7	14.8	I D	d 1 a	15.1	15.1	122
	18	14.9	II	d 2 a	15.5	15.4	133
				d 1.5 a (Z)	15.3		
	26	15.5	I	d 4 a	16.4	16.8	141
				d 6 a (Z)	17.2		
	27	15.4	III	d 7 a	17.6	17.4	142
	29	14.5	II	d 6 a ${ }^{\text {d } 7 \text { a }}$	17.2	17.3	144
	29		II	d 5 a (Z)	16.9	17.0	144
Dec.	21	14.8	III	d 4 a	16.4	16.8	166
				d 6 a (Z)	17.2		
	25	16.1	III	d 4 a	16.4	16.4	170
				d 4 a (Z)	16.4		
	28	14.8	II	d 4 a ${ }^{\text {d }}$ a (Z)	16.4 16.9	16.5	173
84 Jan.	3	14.9	III	d 1 a	15.1	14.9	179
				d 0 a (Z)	14.7		
	5	15.0	I D	e 8 d	13.5	12.9	181
				e 6 d (Z)	12.3		
	15	14.9	I	e 5 d	11.7		191
	17	14.5	I	e 4 d ${ }_{\text {d }}$	11.1	11.7	193
	19	14.2	II	e 8 d (13.5	12.6	195
				e 5 d (Z)	11.7		
	20	15.1	II	e 3 d	10.5	10.8	196
				e 4 d (Z)	11.1		
	21	14.5	II		12.9 11.1	12.0	197
	23	15.3	I	e 54 d	11.7	11.4	199
				e 4 d (Z)	11.1		
	24	14.4	II	e 3 d	10.5	11.1	200
				e 5 d (Z)	11.7		
	30	15.1	II	e 7.5 d	13.2	13.2	206
	31	14.4	III	e 8 d	13.5	12.3	207
Feb.	14	14.7	III	e 4 d d (2)	11.1 13.5	12.6	221
				e 5 d (Z)	11.7		
	19	14.9	I	$\begin{aligned} & \text { e } 10 \text { d } \\ & \text { e } 8 d(Z) \end{aligned}$	14.7 13.5	14.1	226
Sept.	17	16.3	II-III	e 9 c	12.3	13.2	437
				e 8 d	13.5		
				e 5 a	13.8		
	24	16.4	I	e 8 d e 6 a	13.5	14.2	444
				e 6 a	14.8		

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1800 \& \& Gr. M. T. \& Sky \& Comparisons \& I \& 11 \& Mean \& $2400000+$ \& Remarks

\hline \multirow[t]{2}{*}{84 Oct.} \& 12 \& 15.5 \& I \& e 10 c
e 5 d
e 3 a \& \& 12.7
11.7
11.7 \& 12.1 \& 09462 \&

\hline \& 17 \& 15.1 \& I \& e 10 c \& \& 12.7 \& 11.6 \& 467 \&

\hline \multirow[t]{5}{*}{Nov.} \& 8 \& 14.9 \& II \& e 3 d \& \& 10.5
13.5 \& 14.0 \& 489 \&

\hline \& \& \& \& c 3 a \& \& 14.5 \& \& \&

\hline \& \multirow[t]{2}{*}{18
20} \& 15.0 \& I \& d 4 a \& \& 16.4 \& 16.4 \& 499 \&

\hline \& \& 15.7 \& I \& c 6 ca \& \& 16.4 \& 14.8 \& 501 \&

\hline \& \& \& \& c 4 a \& \& 15.2 \& \& \&

\hline Dec. \& 22 \& 14.9 \& II \& c 7 a \& \& 17.0 \& 17.5 \& 533 \&

\hline \multirow[t]{2}{*}{85 Jan.} \& \multirow[t]{2}{*}{9} \& \multirow[t]{2}{*}{15.8} \& \multirow[t]{2}{*}{I} \& e 9 a
d 6 a \& \& 17.9
17.2 \& 17.5 \& 551 \&

\hline \& \& \& \& d 4 b \& \& 17.7 \& \& \&

\hline \multirow[t]{6}{*}{Oct.} \& \& 15.6 \& II \& d 3 a \& \& 16.0 \& 16.0 \& 816 \&

\hline \& 8 \& 15.6 \& I \& e 9 d ? \& \& 14.1 \& (14.1) \& 823 \&

\hline \& 9 \& 15.8 \& I \& e 9 d ! \& \& 14.1 \& 14.1 \& 824 \&

\hline \& 13 \& 15.7 \& I \& e 9 d
e 6 a \& \& 14.1
14.8 \& 14.5 \& 828 \&

\hline \& \multirow[t]{2}{*}{15} \& 15.4 \& D \& d 3 a ! \& \& 16.0 \& 16.0 \& 830 \& Difficult

\hline \& \& 15.4 \& \& d 3 a \& \& 16.0 \& 15.9 \& 844 \& *)

\hline \multirow[t]{5}{*}{Nov.} \& 4 \& 15.8 \& II \& e ${ }^{\text {d }} 4 \mathrm{a}$ \& \& 16.4 \& 16.1 \& 850 \&

\hline \& \& \& \& c 5 a \& \& 15.8 \& \& \&

\hline \& 9 \& 15.3 \& I \& c 9 d ! \& \& 14.5 \& 15.5 \& 855 \&

\hline \& 12 \& 15.2 \& II \& d 4 a? \& \& 16.4 \& (16.1) \& 858 \&

\hline \& \& \& \& e 5 a? \& \& 15.8 \& \& \&

\hline \multirow[t]{4}{*}{Dec.} \& 2 \& 15.5 \& I \& d 3 a \& \& 16.0 \& 15.6 \& 878 \&

\hline \& \multirow[t]{2}{*}{6} \& 15.1 \& I \& c 4 a
d 4 a \& \& 15.2
16.4 \& 16.2 \& 882 \&

\hline \& \& \& \& d 2 b \& \& 16.2 \& \& \&

\hline \& \& 15.7 \& I \& c 5 a
d 3 a

a \& \& 16.1 \& 16.0 \& 887 \&

\hline \multirow[t]{4}{*}{86 Jan.} \& 5 \& 15.3 \& I \& e 9 c \& \& 12.3 \& 13.0 \& 912 \&

\hline \& \& \& \& e 7 d \& \& 12.9 \& \& \&

\hline \& \multirow[t]{2}{*}{11} \& 15.4 \& I \& e 5 a
c 1 d \& \& 13.8 \& \& \&

\hline \& \& \& \& c 1 d
c 2 a \& \& 12.9
13.9 \& 13.4 \& 918 \&

\hline \multirow[t]{2}{*}{Jan.} \& \multirow[t]{2}{*}{30} \& \multirow[t]{2}{*}{15.8} \& \multirow[t]{2}{*}{II-III} \& g 0 e \& \& 6.7 \& 7.4 \& 937 \&

\hline \& \& \& \& g 2 d
g 1 c
c \& \& 8.3
7.3 \& \& \&

\hline \multirow[t]{3}{*}{Feb.} \& \multirow[t]{3}{*}{1.} \& 15.4 \& \& $\bigcirc 9 \mathrm{~g}$ \& \& 6.0 \& 6.0 \& 939 \&

\hline \& \& 15.3 \& I \& h 9 g \& \& 6.0 \& 7.3 \& 940 \&

\hline \& \& \& \& h 8 e
h 7 c \& \& 7.0
8.9 \& \& \&

\hline
\end{tabular}

*) The Journal has another estimate: d 7 c , for which no explanation can be found, as it is contradictory to the scale and to the other observations.

1800+	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
86 Feb.	15.0	I	h 9 g		6.0	6.5	09941	$\mathrm{T}>\mathrm{g}!$
	15.2		h 9 g		6.0	7.3	944	
			h 8 e		7.0			
	14.9	I	h 8 g		5.4	6.4	945	
			h 7 e		6.1			
	14.9	II-III	h 8 g		5.4	5.4	946	
	15.0	DD	h 6 g		4.0	4.0	953	T very red
	15.0	III	h 7 g ?		4.5	4.5	959	Fog
	15.2	I	h 6 g g		4.0	4.0	960	
	14.6	I	h 6 g		4.0	"	961	
	15.2	I	h 6 g		4.0	"	963	
Mar. $\quad 2$	15.5	I	h 6 g		4.0	"	968	
5	14.8	I	h 6 g		4.0	"	971	
25	14.4	I	h 6 g		4.0	"	09991	$\left\{\begin{array}{l}\text { Near horizon } \\ \text { Not fainter }\end{array}\right.$

METHOD BY STEPS:

1090
β Persei (Algul) Serims V.
$(1900) 3^{\mathrm{h}} 1^{\mathrm{m}} 40^{\mathrm{s}}\left(+3^{\mathrm{s}} .89\right) ; \quad+40^{\circ} 34^{\prime} .2\left(+0^{\prime} .23\right)$
Period: $2^{d} 20^{\mathrm{h}} 48^{\mathrm{m}} \pm$; Variation: $2.3-3.5$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
r Andr.	11	$+41^{\circ} 395$	0.0	2.3 HP.
r Pers.	19	$52^{\circ} 654$	4.5	3.0 "
ε	32	$39^{\circ} 895$	6.5	2.9 "
\%	30	$31^{\circ} 666$	7.0	2.9 "
i	26	$47^{\circ} 876$	9.3	3.1 "
ρ	20	$38^{\circ} 630$	$\left\{\begin{array}{l}11.6 \\ 12.1\end{array}\right.$	3.4-4.2
κ	23	$44^{\circ} 631$	12.6	4.1 HP .
,	28	$+42^{\circ} \mathrm{S} 15$	13.2	3.9 "

Notes:

As in the case of U Cephei, these observations were made mainly for practice between the regular observations of long period variables. For this reason the branches of the light curve observed are not symmetrical with regard to the minimum.

The comparison star ρ, which is irregularly variable, has two different steps assigned in the scale: 11.6 and 12.1, derived respectively from the observations on November 12 and April 12.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

METHOD BY STEPS:

87 Mar.	22	$14^{\mathrm{n}} 3^{\text {m }}$: $1 \beta 0$	7.3		7.3	10353	Watch corr: $=-2^{\mathrm{m}}$ applied
		1412			8.4 8.0	8.4	8.3		Eph. Helioc. Min. $13^{\mathrm{a}} 27^{\mathrm{m}}$
		1421		$\varepsilon 1 \beta 2{ }^{\circ}$	7.4	7.4	7.3		
				$\zeta 0$ \%	7.0				
		1434		ค18	5.5		5.9		
				$\beta 1 \%$	6.0				
		1443			6.3 5.5	5.5	5.3		
				${ }_{\beta} 2{ }^{\text {\% }}$	5.0				
		1514		\% A 4 ¢ 2ε	4.3	4.3	- 4.2		$\mathrm{A}=$ Andromedre
		161		¢ ${ }^{\text {¢ }}$ ¢	4.5		4.3		
				P3:	4.0				
				F1\% $i 4 \%$	3.8				
87 Nov.	12	1426	III	¢ $2 \beta 2 \rho$?	10.5	10.5	10.5	858	
		1439		${ }^{\circ} 1 \beta 2 \rho$	10.0 8	10.1	9.3		Eph. Helioc. Min. $16^{\mathrm{b}} 17^{\mathrm{m}}$
		1450		${ }^{\zeta} 1 \beta$	10.3	8.4	10.0		
				¢ $2 \beta 2 k$	9.8	9.8		.	
		154		$\delta^{\circ} 1 \beta^{0} 0.5$ p	10.7	10.8	10.0		
				$\zeta 2 \beta 3 \kappa$	9.3	9.2			
		$15 / 7$			10.7 9.3	$\begin{array}{r} 10.8 \\ 9.2 \end{array}$	9.6		
				$\varepsilon 1.5$ \%	8.0				
		1530			11.5		10.1		
				$\varepsilon 2.5 \beta$	9.0				
				¢ 2.5 B	9.0				
		160		${ }_{\circ} 1 \beta 1 \rho$	10.5	10.5	9.7		
				$\varepsilon 2 \beta$	8.5				$\}^{\text {Hazy }}$
				$\varepsilon 1 \beta 2 \rho$	9.6	8.2			
		1630			9.0		7.9		
				¢ 0.5 \%	7.0				
88 Apr.	12		II-III						
		1415		$\varepsilon 0 \leftrightharpoons 1 \beta 3 \rho$	8.6	8.3	8.2	740	Watch corr. $0^{\text {m }}$
		1422		ع $0<2 \beta 3 \nu$	9.2	9.3	9.5		
				¢1 1 ¢ 4 к	9.5	10.0			

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
SS Apr. 12	$14^{n} 41^{\text {m }}$		$\varepsilon 3 \beta 3 \%$	9.9	9.8	10.3	10740	
	1450		ع 3 \% 3 ,	9.9	9.8	10.3		
	157		\% 2β \%	11.3 10.4	10.3	10.9		
			¢ 3 \% 1 \%	11.7	11.1			
	1529		i $3 \beta 3$,	11.3	11.0	11.2		Eph. Helioc. Min. $15^{\text {b }} 28^{\text {m }}$

s III.

Correction to :
21)

"OBSERVATIONS OF VARIABLE STARS

made in the years 1884-1890, Washington 1901."
Page 22, Nov. 12,

$$
\begin{array}{cccccc}
\text { for } & 15^{\mathrm{h}} & 7^{\mathrm{m}} & \text { read } & 15^{\mathrm{h}} & 17^{\mathrm{m}} \\
\text { ، } & 15 & 14 & 6 & 15 & 44
\end{array}
$$

gn.

3
.5
9
3
5
1

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD:

METHOD BY STEPS:

*) The original record has $\mathrm{R} 2 \mathrm{~b}, \mathrm{R} 3 \mathrm{f}$, contrary to the scale of steps.
(1900) $5^{\mathrm{h}} 9^{\mathrm{m}} 13^{\mathrm{s}}(+4.83) ;+53^{\circ} 28^{\prime} .4 \quad\left(+0^{\prime} .07\right)$

Period: 460.2 ; Variation: 7 ? $-12 \frac{1}{2}$.
Comparison Stars:

Obs.	ASV.	BD.	Steps.	Magn.
a	1	$+53^{\circ} 872$	0.0	(6.5) BD .
g	3	878	10.0	8.4
c	4	884	15.5	8.7
b	9	879	17.5	9.0
d	8	$+53^{\circ} 880$	22.0	9.0
e	23	27.0	10.3
f	26	\cdots	30.3	10.7

$\left.\begin{array}{l|c|c|c|c|c|c|c}\hline 1800+ & \text { Gr. M. T. } & \text { Sky } & \text { Comparisons } & \text { I } & \text { II } & \text { Mean } & 2400000\end{array}\right]$ Remarks

DECIMAL METHOD:

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

METHOD BY STEPS:

Notes:
The observations of this star commenced soon after its discovery (1885) by Gore, and may for this reason be of value.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

METHOD BY STEPS :

86 Dec.	7	15.5		B 4 C 2 U 8 E	3.5	4.9	4.2	10248
	8	15.0		B 3 C 5 U 8 E	5.0	5.9	5.5	249
	14	15.1		B6C3U8E	4.0	5.3	4.7	255
	15	14.8	I	B4C5U8E	5.0	5.9	5.5	256
	29	15.3	I	B 2 C 3 U 8 E	4.0	5.3	4.7	270
87 Jan.	14	16.5	III	B 5 U 4 k	6.7	6.7	7.1	286
				B 5 U 7ρ	8.2	7.6		
	23	16.3	I	B7 U3k	8.2	8.6	8.8	295
				B $7 \mathrm{U} 7 \rho$	9.2	9.2		
	28	14.5	II	B 8 U 4 k	8.2	8.2	9.0	300
Feb.	S	15.8		B $84 \mathrm{U} 7 \rho$ U 4 k	9.7	9.8	8.8	
				U9 9	S.3 9.3		8.8	311
	12	15.3	I	U 4 k	8.3		10.3	315
				U 6ρ	12.3			
	15	15.8		k 1 U 5 ¢	13.3	13.3	13.3	318
	16	14.7	II	k1 U 5 P	13.3	13.3	13.3	319
	24	15.3	I	k $2 \mathrm{U} 4 \rho$	14.3	14.3	14.3	327
	27	16.1	III	$\mathrm{k} 3 \mathrm{U} 4 \rho$	14.8	14.9	14.9	330
Mar.	13	15.8	III	$\mathrm{k} 5 \mathrm{U} 2 \rho$	16.8	16.6	16.7	344
	17	15.2	I	k 4 U $2 \dot{\rho}$	16.3	16.3	16.3	348
	$\stackrel{27}{ }$	15.5		\% 2 U 2 x	20.3	20.3	20.3	358
	28	16.2	II	$p 2 \mathrm{U} 2 \mathrm{x}$	20.8	20.8	20.8	359
Apr.	18	15.1	II	x 1 U 1 z ?	24.6	24.6	24.6	380
	20	14.8	I	$x 2 \mathrm{U} 1 \mathrm{z}$	25.1	25.0	25.1	382
	25	15.5	I	x 2 U 0.5 z	25.4	25.4	25.4	387
88 Jan.	11	15.3	I	E1 U 2 k	10.3	10.2	11.0	648
				E1U5 ${ }^{\text {d }}$	11.8	11.6		
	17	15.2	I D	E1 U 2 k	10.3	10.2	11.0	654
Feb.	7	15.8	I		11.8	11.6 11.3	10.9	675
				B $7 \mathrm{U} 5 \rho$	10.2	10.7	10.9	670
	14	15.8	,	k 1 U 5 ¢	13.3	13.3	13.3	682
Mar.	${ }^{6}$	15.3	I	k 3 U 2ρ	15.8	15.9	15.9	703
	13	15.0	I	k 3 U3 ${ }^{\text {a }}$	15.3	15.3	15.3	710
Apr.	3 11	15.5	III	k5 U 0ρ	17.8	18.3	18.1	731
	11	15.2	I	$\rho 4 \mathrm{U} 2 \mathrm{x}$	21.8	21.6	21.7	739

2539 R Canis Minoris Series IV.

$(1900) 7^{\mathrm{h}} 3^{\mathrm{m}} 13^{\mathrm{s}}\left(+3 .{ }^{\mathrm{s}} 30\right) ;+10^{\circ} 10^{\prime} .9 \quad\left(-0^{\prime} .09\right)$ Period: $337^{\mathrm{d}} 7$; Variation; $7 \frac{1}{2}$. -10^{m}.

Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
c		$+9^{\circ} 1539$	0.0	7.4
a BD.		$10^{\circ} 1416$	6.7	8.4
b		$10^{\circ} 1429$	11.0	8.3
k		$9^{\circ} 1531$	15.0	8.9
d		$10^{\circ} 1422$	18.7	9.0
e		$10^{\circ} 1421$	24.7	9.5
f		$+10^{\circ} 1418$	28.2	9.5

Notes:

Two other comparison stars were used only once (1887, March 24), and are omitted in the scale and in the reductions. They are:

$$
\begin{aligned}
& \mathrm{g}=\mathrm{BD} .+10^{\circ} 1432, \stackrel{\mathrm{~m}}{9.0} \\
& \mathrm{~h}= \\
& \hline
\end{aligned}
$$

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	2400000	Remarks

DECIMAL METHOD :

83 Dec.	21	15.6	III	a 8 b a 7 b (Z) 7	10.1 9.7	9.9	09166
	25	16.7	III	c $7 \mathrm{~b}, \mathrm{R}>\mathrm{a}$! !	7.7	6.9	170
				c 5 b (Z)	5.5		
				a 2 b	7.6		
	2	16.2	I	$\mathrm{c}^{8} 8$ a	5.4	6.1	173
84 Jan.	3	15.4	III	c 9 a	6.0	6.4	179
				c 10 a (Z)	6.7		
	5	15.3	I D.	c 6 a	4.0	3.4	181
				c 4 a (Z)	2.7		
	15	14.7	I	c 6 a	4.0	4.0	191
	17	14.2	I		4.0 2.7	2.4	193
			1	c 3 a (Z)	2.0	2.4	
	19	15.5	II	c 5 a	3.4	3.7	195
				c 6 a (Z)	4.0		
	20	14.3	II	c 4 a	2.7	2.7	196
				c 4 a (Z)	2.7		
	21	15.1	II	c 3 a	2.0	1.7	197
				c 2 a (Z)	1.3		
	23	14.3	I	c 3 a	2.0	1.7	199
				c 2 a (Z)	1.3		
	24	15.1	II	c 3 a	2.0	2.4	200
				c 4 a (Z)	2.7		206
	30	14.5	II	c 3 a ${ }_{\text {c }}$ (Z)	2.7 2.0	2.4	206
	31	15.3	III	c 3 a	2.0	2.4	207
				c 4 a (Z)	2.7		
Feb.	14	15.1	III	c 3 a	2.0	2.4	221
				c 4 a (Z)	2.7		
	19	15.4	I	c 3 a ${ }_{\text {c }}$ a (Z)	2.0 1.3	1.7	226
Mar.	23	15.1	III	c 7 a	4.5	4.5	259
				c 7 a (Z)	4.5		
Apr.	2	15.8	I D	c 8 a	5.4	4.7	269
				c 6 a (Z)	4.0		
	20	14.6	III		11.8	13.0	287
May	13	15.3	II	b 4 d (Z) R	14.1	> 19	310
Nov.	18	16.1	I	a 8 b	10.1	11.4	499
				a 5 d	12.7		
Dec.	22	15.5	II	c 6 a	4.9	3.7	533
				c 3 b	3.3		

METHOD BY STEPS:

*) See notes above.

Period: $305^{\mathrm{A}} .0$; Variation: $9 \frac{1}{2}^{\mathrm{N}}-<14^{\mathrm{n}}$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
b	6	$+19^{\circ} 2045$	0	
c	12	2046	9	8.9
d	20	2048	15	9.3
				9.9

Notes:
This variable proved to be too faint for the 3 -inch glass. When it was marked "barely visible," it must has been between the 10th and 11th magnitude. The few observations may serve to confirm those made elsewher

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

$$
\begin{aligned}
& 3109 \\
& \text { S Cancri }
\end{aligned} \text { Series IV. }
$$

Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
		$+19^{\circ} 2097$	0.0	
b		2094	8.0	8.5 "
d		2101	9.6	8.7 "
c		2088	12.9	9.0 "
e		2089	21.8	9.4 "
k		2086	25.7	9.5 "
g	,	$+19^{\circ} 2085$	29.6	9.5 "

Notes:

The observations of this Algol-Star were made partly for the sake of practice, partly with the view of studying its general light curve. While pursuing them a secondary minimum was suspected.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD:

METHOD BY STEPS :

87 Jan. 23	$\begin{aligned} & 1426 \\ & 1531 \\ & 1614 \end{aligned}$	I I II		$\begin{aligned} & 24.3 \\ & (22.6) \\ & 21.3 \\ & 20.8 \\ & 25.6 \\ & 21.3 \\ & 19.8 \\ & 22.6 \end{aligned}$	24.1 21.9 21.4	23.8 22.4 21.3	295

3477 R Leonis Minoris Series III.
(1900) $9^{\mathrm{h}} 39^{\mathrm{m}} 35^{\mathrm{s}}(+3.61) ;+34^{\circ} 58^{\prime} .3 \quad\left(-0^{\prime} .27\right)$

Period: $370^{\circ} 5 \pm ; \quad$ Variation: $7^{\mathrm{x}}-13^{\mathrm{m}}$
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
B	1	$+35^{\circ} 2042$	0.0	(6.5) BD.
C	2	+34 ${ }^{\circ} 2035$	3.8	(6.3) "
E	3	+34 ${ }^{\circ} 2022$	5.5	7.6
H	4	+ $35^{\circ} 2046$	9.5	7.9

Notes:
This variable was observed for a short while at the request of Mr. H. M. Parkhurst. The comparison stars and their designations are identical with those published by him in the Annals of H. C. O., vol. XXIX, page 150

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

3825 . R Ursæ Maioris Series III.
(1900) $10^{\mathrm{h}} 37^{\mathrm{m}} 34^{\mathrm{s}}\left(+4 .{ }^{\mathrm{s}} 32\right) ; \quad+69^{\circ} 18^{\prime} .0 \quad\left(-0^{\prime} .31\right)$

Period: $302^{\mathrm{d}} 1 \pm ; \quad$ Variation: $7^{\mathrm{M}}-13^{\mathrm{m}}$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
a	1	$+69^{\circ} 586$	0.0	(4.7) BD.
f	2	583	2.1	(5.5) "
b	5	584	10.2	8.5
c	7	$+69^{\circ} 585$	11.9	9.1
d	12	.	14.0	9.9
e	14	…..	16.0	10.6

Notes:

As the observations of this star were discontinued before Argelander's method by steps was employed they furnish ro scale for the comparison stars. An artificial scale was constructed from the data of the ASV The scale of the Atlas does not comprise the stars a and f, but can be extended by extrapolation by means of th formula which connects steps and magnitude. This gives the steps - 88 and -67 for a and f respectively. By adding +88 to all the numbers of the scale and finally dividing by 10 the above scale was found.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks

DECIMAL METHOD:

5157 S Bootis Series III.
(1900) $14^{\mathrm{n}} 19^{\mathrm{m}} 32^{\mathrm{s}}\left(+2^{\mathrm{s}} .01\right) ;+54^{\circ} 15^{\prime} .9$ ($-0^{\prime} .27$)

Period: $268^{\mathrm{d}} .2+; \quad$ Variation: $8^{\mathrm{M}}-13^{\mathrm{M}}$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
k	2	$+54^{\circ} 1668$	0.0	8.1
p	3	$+53^{\circ} 1714$	2.6	8.2
g	4	$+54^{\circ} 1679$	5.5	8.5
r	7	1677	12.0	9.3
e	8	1676	15.3	9.5
c	9	1663	16.5	9.5
a	14	1674	21.3	9.9
d	12	1672	22.8	9.8
m	15	$+54^{\circ} 1670$	24.3	10.1

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD :

METHOD BY STEPS:

5484 U Coronæ \quad Series IV.

Period: $3^{\mathrm{d}} 10^{\mathrm{h}} 51^{\mathrm{m}} 12 . .^{\text {s. }} 4-$; Variation: $7^{\mathrm{m}} 5-8 .{ }^{\mathrm{m}} .9$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
a	III 2	$+31^{\circ} 2724$	0.0	7.6
h	-	$+32^{\circ} 2575$	(8.2)	$(8.1) \mathrm{BD}$.
g	4	$+32^{\circ} 2578$	8.4	8.1
b	5	$+32^{\circ} 2577$	(11.0)	8.4
i	-	$+32^{\circ} 2573$	11.2	$(8.9) \mathrm{BD}$.
c	6	$+32^{\circ} 2572$	16.2	8.6
d	10	\ldots	(22.9)	9.8

Notes:

This variable is on the Chart for S Coronæ (5504 , Series III), and the numbers in the 2 d and 5 th column refer to the Catalogue of the same variable. The steps in parentheses could not be determined with accuracy That of the comparison star d, which occurs only once, is taken from the scale for S Coronæ.

The observations, like all those of the Algol type variables, are not systematically arranged for the determina tion of the minima.

$1800+$	Gr. M. T.	Sky	Comparisons	I.	II	Mean	$2400000+$

DECIMAL METHOD:

84 June July	28 12	$16^{\text {b }} 0^{\text {m }}$ 1510	II II	a 8 c a 6 c a a c c	13.0 9.7 16.2	11.4 14.6	09356 370	${ }^{\frac{1}{2}}{ }^{\text {a }}$ before Eph. Min.
July				a $8 \mathrm{c}(\mathrm{Z})$	13.0		370	
	18	1532	III	a 4 c	6.5	7.3	376	
	20	1532		a 5 c (Z)	8.1			
	20	1032	II	a 4 c a $4 \mathrm{c}(\mathrm{Z})$	6.5 6.5	6.5	378	
Aug.	21	1520	I	a 5 c	8.1	7.3	410	
Sept.	9	1443	I	a $4 \mathrm{c}(\mathrm{Z})$	6.5	5.4	429	$1^{\text {b }}$ before Eph. Min.
				a 3 c	4.9			
Oct.	19	1515	II	a $\begin{aligned} & \text { c } \\ & \text { d }\end{aligned}$	5.9 16.9	16.9	439	
	9	1420	II	a 2 c a 7 g	3.2 5.9	4.6	459	
85Apr.May	10	1613	II	a 4 c	6.5	5.8	642	
	3	1647	III	a 6 g	5.0			
		164	III	a 4 c	6.5 6.6	6.6	665	
	12	1617	I	a 4 c g 1 b	6.5	7.6	674	
June	4	1647	I	a 4 ca 7 g	8.7 6.5		697	
		1552			5.9	6.2		
	16		I	a 5 c	8.1	8.4	709	
July		1620		g 1 b	8.7			
	1.		I	${ }_{\text {a }} 4 \mathrm{c}$	6.5	7.9	724	
				g 1 c	9.2			
	13	1615	I	a 6 c	9.7	9.7	736	
Aug.	30	1542	I		15.7	15.7	760	$2^{\text {n }}$ before Eplı. Min.
		1528	I	b 9 c a 6 b	6.6	15.7 5.8	784	
Oct.				a 3 c	4.9			
	5	1442	I	a 4 c	6.5	7.3	820	
				a 7 b	7.7			
				a 9 g	7.6			
86 Mar.	9	1542	I	a 4 ca 5 b	6.5	6.0	971	Near hor.
	22	1432			5.5	12.3	988	
			I	a 8 c	13.0 11.5			Eph. Hel. Min. $14^{\text {b }} 27^{\text {a }}$
	"	1439	"	a 7 c	11.3	11.3	"	
	"	1445	"	a 7 c	11.3	11.4	"	
		1452		b 1 c	11.5			
	"		"	a 7 c	11.3	11.1	"	
				g 10 b	11.0			
				g 4 c	11.5			
				g. 9 b	10.7			

1800		Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
86 Mar.	22	$15^{\mathrm{n}} \quad 0^{\text {m }}$	I	a 7 c		11.3	11.1	09988	
				g 8 b		10.5			
		159	"	g 46 a 6 c		11.5 9.7	10.1	"	
				g 6 b		10.0			
				g 3 c		10.7			
		1520	"	a 6 c		9.7	9.9	"	
				g 6 b		10.0			
Apr.	${ }_{5}^{1}$	1544 1450	$\stackrel{\text { I }}{\text { II }}$	a 7 c a 4 c		11.3 6.5	11.3 6.6	09998 10902	
				a 8 g		6.7			
	22	1530	III	a 6.5 c		10.5	10.6	019	$\frac{1}{2}{ }^{\text {n }}$ before Eph. Min.
				h 3 c		10.6			
May	6	1453	III	a 6 c		9.7	8.7	033	
				a 9 g		7.6			
		1534	"	a 8 g		6.7	8.2	"	
June	30	1537	II-III	a 6 c a 8 c		9.7 13.0	12.6	088	
				i 2 c		12.2			

METHOD BY STEPS:

87 May	24	1542		j 1 U	12.2		12.2	416	
		1552		i 1 U 3 c	12.7	12.4	12.6	"	
		1615		i 1 U 3 c	12.7	12.4	12.6	"	Eph. Hel. Min. $16^{\text {b }} 21^{\text {m }}$
		1629		i 2 U 2 c	13.7	13.7	13.7	"	
		179		i1 U 3 c	12.7	12.4	12.6	"	
July	9	150	II	U 3 i	8.2		8.2	462	
	15	1512	I	U3i	8.2		8.2	468	
Sept.	15	1444	I	i 1 U 3 c	12.7	12.4	12.6	530	Eph. Hel. Min. $14^{\text {b }} 32^{\text {m }}$
		1457	"	i 2 U 3 c	13.2	13.2	13.2	"	
		154	"	g 2 U 0 i	10.8		10.8	"	
		1513	"	g 2 U 1 i	10.3	10.3	10.3	"	
		1524	"	g 2 U 1 i	10.3	10.3	10.3	"	
		1536	"	g 1 U 2 i	9.3	9.3	9.3	"	
88 Sept.	8	156	I	i 2 U 3 c	13.2	13.2	13.2	889	
-		1514	"	i 3 U 3 c	13.7	13.7	13.7	"	
		1525	"	i 3 U 3 c	13.7	13.7	13.7	"	Eph. Hel. Min. $15^{\mathrm{h}} 21^{\mathrm{m}}$
		1537	"	i 2 U 3 c	13.2	13.2	13.2	"	
		1544	"	i 2 U 4 c	12.7	12.9	12.8	"	
		1556	"	i 1 U 5 c	11.7	12.0	11.9	"	
		160	"	i 0 U	11.2		11.2	"	

5501 S Serpentis Series II.
(1900) $15^{\mathrm{h}} 16^{\mathrm{m}} 59^{\mathrm{s}}\left(+2^{\mathrm{s}} .81\right) ; \quad+14^{\circ} 40^{\prime} .4 \quad\left(-0^{\prime} .22\right)$

Period: $365^{\mathrm{d}} 4$; Variation: $8^{\mathrm{m}}-12 \frac{1}{2}^{\mathrm{m}}$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
b	1	$+15^{\circ} 2845$	0.0	8.0
a	2	$14^{\circ} 2866$	8.5	8.3
c	3	$14^{\circ} 2868$	11.2	8.6
e	4	$15^{\circ} 2846$	15.0	9.0
d	5	$14^{\circ} 2862$	19.0	9.3
f	6	$+15^{\circ} 2848$	20.4	9.5
g	8	$\ldots \ldots \ldots$	24.0	9.9

- Notes:

The comparison star f, which was not used with the method by steps, was inserted in the above scale by means of observations made later for the Atlas.

$1800+$	Gr. M. T.	Sky	Comparisons	I	.II	Mean	$2400000+$	Remarks

METHOD BY STEPS:

87 Mar.	24	16.5	I	a 2 S 1 c	10.4	10.3	10.4	10355	
Apr.	29	15.7	III	c 2 S 2 e	13.1	13.1	13.1	391	
May	15	15.8	I	e 1 S 1 d	17.0	17.0	17.0	407	
	20	15.5	III	e 2 Sod	18.0		18.0	412	
June	14	15.9	I	d 2 S 2 g	21.5	21.5	21.5	437	
	17	16.6	I	d 4 S 2 g	22.5	22.3	22.4	440	
	23	15.5	I	$\mathrm{S}=\mathrm{g}!$!	24.0		24.0	446	
July	9	15.5	II	g 2 S	26.0		26.0	462	
88 Apr.	5	15.6	III	b 3 S 4 a	3.8	3.6	3.7	733	
	11	15.4	I	b 4 S 6 a	3.3	3.4	3.4	740	
May	28	15.5	I	a 5 S 5 d	13.8	13.8	14.8	786	
June	2	15.5	I	e 2 S 5 d a 4 S 4 d	15.5 13.8	16.1 13.8	14.7	791	c 2 d
				e 1S4d	15.5	15.8			
	29	15.2	I	d 2 S 3 g	21.0	21.0	21.0	818	
July	11	16.1	$\stackrel{\text { I }}{\text { I }}$	d 5S 3 g	22.5	22.1	22.3	830	
	29	16.3	III	g 2 S	26.0		26.0	848	Seeing poor.

*) The journal has a 5 S 3 g ; but it is evident from the scale of the comparison stars, that a would never b combined with g as long as d was available.
5504 S Coronæ Serirs III.
(1900) $15^{\mathrm{h}} 17^{\mathrm{m}} 19^{\mathrm{s}} \quad\left(+2^{\mathrm{s}} .45\right) ; \quad+31^{\circ} 43^{\prime} .6 \quad\left(-0^{\prime} .22\right)$

Period: 360.8; Variation: $7^{\mathrm{x}}-12^{\mathrm{x}}$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
f	-	$+33^{\circ} 2574$	0.0	(6.8) BD.
a	2	$31^{\circ} 2724$	2.0	7.6
g	4	$32^{\circ} 2578$	7.1	8.1
h_{1}	-	$32^{2} 2575$	9.0	(8.1) BD.
b	5	$32^{\circ} 2577$	11.1	8.4
c	6	$+32^{\circ} 2572$	16.1	8.6
d	10	-	22.9	9.8

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD :

METHOD BY STEPS:

87 Mar.	17	15.5	I	a 2 S 2 g a 2 S 5 b	4.6 5.1	4.6 4.6	1.7	348	
	24	16.1	I	a 2 S 3 g	4.1	4.0	4.1	355	
Apr.	20	15.0	I	S 0 a	2.0		2.0	382	
	25	16.4	I	a 1 S	3.0		3.0	387	
May	15	16.0	I	a 2 S 3 g !	4.1	4.0	4.1	407	
	20	15.7	III	a 4 S 2 g !	5.6	5.4	5.5	412	
	24	15.8		a 3 S 2 g	5.1	5.1	5.1	416	
June	14	16.0	I	g 1 S 2 b	8.6	8.4	- 8.5	437	
	17	16.7	I	g 1 S 2 b	8.6	8.4	8.5	440	
	23	15.7	I	g 3 S 2 b	9.6	9.5	9.6	446	
July	9	$\cdot 15.7$	II	b 2 S 5 d	15.5	14.5	15.0	462	
	15	15.2	I	b 4S 3d	17.5	17.8	17.5	468	
	22	15.5	I	b ${ }_{\text {c }}$ d S 4 d	17.0	17.0	16.7	475	
				c 0 S	16.1				
Aug.	6	15.0	II	c 3 S 3 d	19.5	19.5	19.5	490	
Sept.	6	15.3	II	d 2 S	24.9		24.9	521	
	13	14.7	I	S 1 d !	21.9		21.9	528	
	15	15.6	I	d 1 S	23.9		23.9	530	
88 Apr.	5	15.5	II-III	S 0 a	2.0		2.0	733	
-	11	15.3	I	f 0 S 2 a	0.0		0.0	739	
May	28	15.6	I	a 3 S 3 g	4.6	4.6	4.6	786	
June	2	15.6	I	a 3 S 4 b	6.1	5.9	6.0	791	
	29	15.4	I	g 1 S 2 h	7.6	7.7	7.5	818	
July	11	16.2	I	g 2 S 3 b	8.6	8.7	8.8	830	
				S 0 h	9.0				
	29	16.4	I	b 4S 2 c	14.6	14.4	14.5	848	Seeing poor.
Aug.	7	15.3	I	b 6 S 6 d	17.0	17.0	17.3	857	
				c 2 S 6 d	17.5	17.8			
	12	15.4	I	c 3 S 4 d	19.0	19.0	19.0	862	
	24	15.2	I	c 5 S 3 d	20.5	20.4	20.5	874	
	29	15.3	I	c 4 S 3 d	20.0	20.0	20.0	879	
Sept.	6	14.9	I	c 7 S 3 d	21.5	20.9	21.2	887	

5770	R Herculis	Series II.
$(1900) 16^{\mathrm{h}} 1^{\mathrm{m}} 44^{\mathrm{s}}\left(+2^{\mathrm{s}} .68\right) ;+18^{\circ} 38^{\prime} .4$	$\left(-0^{\prime} .16\right)$	

Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
f	3	$+18^{\circ} 3113$	0.0	8.6
e	4	3114	4.0	8.7
c	5	3120	6.0	8.9
d	7	3121	8.7	9.1
a	9	3119	10.9	9.5
g	10	3111	11.5	9.6
k	12	3115	14.5	9.8
b	18	$+18^{\circ} 3116$	17.5	10.4

Notes:
Comparison star a, which was used only once, has been inserted from later observations with the 12 -in refractor at Georgetown.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD:

Gr. M. T.	Sky	Comparisons	I	II	Mean	2400000+	Remarks	
86 July	4	16.3	I	d 6 g c 8 g		10.5 10.5	10.5	10092

87 Apr.	20	15.3	I	c 2 R 1 d	7.9	7.8	7.9	382
	25	16.6	I	c 0 R 2 d	6.4		6.4	387
May	18	16.2	I	d 2 R 1 g	10.6	10.6	10.6	410
	24	16.2		g $1 \mathrm{R}_{\mathrm{R}} 2 \mathrm{k}$	12.5	12.5	12.2	416
June	15	15.6	I	b 1 R	18.5		18.5	438
				k 4 R	18.5			
	19		I	b 2 R	19.5		19.5	442
88 Apr.	5	16.0	II-III	f 4 R 2 c R 3 d	4.0 5.7	4.0	4.4	733
				R 0 e	4.0			
	11	15.6	I	c 1 R 2 d	6.9	6.8	7.2	739
				e 4 R R invis.	8.0			
June	30	16.3	II	"" "			> ${ }^{\text {c }}$	819

5950
W Herculis Serifs III.
(1900) $16^{\mathrm{h}} 31^{\mathrm{m}} 41^{\mathrm{s}}\left(+2^{\mathrm{s}} .13\right) ;+37^{\circ} 32^{\prime} .4 \quad\left(-0^{\prime} .13\right)$

Period: 280 $.0 \pm$; Variation: $8^{\mathrm{n}}-<13^{\mathrm{M}}$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
g	2	$+37^{\circ} 2774$	0.0	8.2
a	4	$37^{\circ} 2772$	2.5	8.4
f	5	$38^{\circ} 2801$	5.0	8.4
c	9	$37^{\circ} 2775$	7.5	9.0
b	14	$+37^{\circ} 2773$	8.5	9.5
e	18	-.......	12.0	10.0
d	19	16.5	10.3

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks

DECIMAL METHOD :

METHOD BY STEPS:

$1800+$			Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
	Oct.	11 18	15.8 14.5	$\stackrel{\mathrm{I}}{\mathrm{II}}$	$\begin{aligned} & \mathrm{e} 2 \mathrm{~W} \quad 2 \mathrm{~d} \\ & \text { e } 1 \mathrm{~W} 4 \mathrm{~d} \\ & \mathrm{~b} 3 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 14.3 \\ & 12.8 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 14.3 \\ & 12.9 \end{aligned}$	$\begin{aligned} & 14.3 \\ & 12.4 \end{aligned}$	$10 \quad 556$	
88	Apr. May June	$\begin{array}{r} 5 \\ 28 \\ 30 \end{array}$	$\begin{aligned} & 16.2 \\ & 15.9 \\ & 16.4 \end{aligned}$	$\begin{aligned} & \text { III } \\ & \text { I } \\ & \text { II } \end{aligned}$	W invis.			>17 $"$ "	$\begin{aligned} & 733 \\ & 786 \\ & 819 \end{aligned}$	

6044 S Herculis Series II.
$(1900) 16^{\mathrm{h}} 47^{\mathrm{m}} 21^{\mathrm{s}} \quad\left(+2^{\mathrm{s}} .73\right) ;+15^{\circ} 6^{\prime} .6 \quad\left(-0^{\prime} .10\right)$
Period: $308^{\mathrm{d}} .1$; large irregularities; Variation: $7^{\mathrm{M}}-12^{\mathrm{M}}$
Comparison Stars:

Obs.	ASV.	BD .	Steps	Magn.
a	1	$+15^{\circ} 3066$	0.0	(6.1) BD.
c	5	3070	7.5	8.6
b	6	3060	10.0	8.8
d	13	$+15^{\circ} 3062$	15.8	9.8

$1800+$	Gr. M.T. Sky	Comparisons	I	II	Mean	$2400000+$	Remarks

DECIMAL METHOD:

METHOD BY STEPS:

87	Apr.	20	15.7	I	b 3 S 2 d	13.4	13.5	13.5	382
		29	16.0	III	d 1 S	16.8		16.8	391
	May	18	16.5	I	d 2 S	17.8		17.8	410
	Sept.	6	15.5	II	S invis.			> 16	521
88	Apr.	5	16.4	III	S invis.			>16	
	May	28	15.9	I	"			"	786
	June	30	16.5	II	"			.	819

T Herculis Series III
(1900) $18^{\mathrm{h}} 5^{\mathrm{m}} 19^{\mathrm{s}}\left(+2^{\mathrm{n}} .27\right) ;+31^{\circ} 0^{\prime} .2 \quad\left(+0^{\prime} .01\right)$

Period: $164^{a} .85 \pm ;$ Variation: $8^{\mathrm{N}}-11 \frac{1}{2}^{\mathrm{m}}$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
g	3	$+30^{\circ} 3138$	0.0	
e	4	$+30^{\circ} 3133$	4.0	7.5
a	6	$+30^{\circ} 3142$	8.0	7.9
f	14	$+30^{\circ} 3139$	16.0	8.1
b	22	$+30^{\circ} 3136$	19.7	9.1
d	29	$+31^{\circ} 3185$	23.8	9.6
c	31	$+30^{\circ} 3135$	27.8	10.1
			10.2	

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD :

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
$\begin{array}{rr} 86 & \text { June } \\ \text { July } & 23 \\ 1 \end{array}$	17.3 15.5 15.7	$\begin{aligned} & \mathrm{I} \\ & \mathrm{II} \\ & \text { III } \end{aligned}$	$\mathrm{T}<\mathrm{d}$ T barely vis. T invis.			>28 $"$ 	$\begin{array}{r} 10060 \\ 081 \\ \quad 089 \end{array}$	

METHOD BY STEPS:

Comparison Stars:

Obs.	ASV.	BD .	Steps.	Magn
d	2	$+49^{\circ} 3059$	0.0	(7.0)
f	5	3051	9.3	8.6
c	6	3073	11.3	8.8
a	11	3072	12.8	9.1
b	14	3065	15.0	9.3
e	31	$+49^{\circ} 3068$	18.0	10.2

DECIMAL METHOD :

$\begin{aligned} & 83 \text { July } \\ & \text { Aug. } \end{aligned}$	31	16.4	I	R barely vis.		>18	09023
	2	16.7	I	" "		>	025
	4	16.4	II	" "		"	027
	22	15.1	I	"		"	045
Sept.	2.	15.3	I	" "		"	056
Oct.	26	15.8	1	R invis.		"	080
	30	14.6	I	R barely vis.		"	084
	6	15.8	I			"	090
	21	15.5	?	a 6 b	14.1	14.1	105
	29	15.0	I	c 8 a	12.5	12.5	113
Nov.	1	15.7	I	d 6 c	6.8	6.8	116
	3	14.6	I	d 4.5 c	5.1	5.1	118
	6	14.8	D	d 4 c	4.5	4.5	121
	7	14.4	2	d 3 c	3.4	3.4	122
	18	14.4	II	d 2.5 c	2.8	2.8	133
	26	15.0	I	d 2 c	2.3	2.3	141
	27	14.9	III	d 1 c	1.1	2.0	142
				d 2.5 c (Z)	2.8		
	29	15.2	II	d 1 c	1.1	1.7	144
				d $2 \mathrm{c}(\mathrm{Z})$	2.3		
Dec.	21	14.3	III	d 1 c	1.1	1.4	166
				d 1.5 c (Z)	1.7		
	25	15.4	III	d 1 c	1.1	1.1	170
				d 1 c (Z)	1.1		
	27	12.9	III	d 2 c	2.3	1.7	172
	28	14.7	II	d 1 c c	1.1	1.7	173
				d 2 c (Z)	2.3		
84 Jan.	3	14.8	III	R invis.		-	179
	5	14.4	I D	$\begin{align*} & \mathrm{d} 2 \mathrm{c} \\ & \text { d2 } 2 \tag{Z} \end{align*}$	2.3 2.3	2.3	181
May	28	16.0	I	R invis.		>18	325
June	14		I	" "		> 18	342
July	13	16.0	II	" "		"	371
Aug.	23	15.0	I	" "		"	412
Sept.	17			" "		"	437
Oct.	10	14.5	I	" "		"	460
Nov.	7	14.7	I	" "		"	488
Dec.	9	14.8	III	"		"	520
85 June	9	16.1	I	a 10 e	18.0		
	17	15.2	I	a 10 e?	18.0	18.0	710
July	1	16.8	I	R just vis.		>18	724
	13	17.3	I	" " "		"	736
Aug.	3	15.8	II	R invis.		"	757

*) Sky III will explain this.

METHOD BY STEPS:

$1800+$			Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
88	June	30	15.8	II	d 1 R 9 f	0.6	0.9	0.8	10819	
	July	11	16.3	I	d 3 R 7 f	2.7	2.8	2.8	. 830	
		29	16.7	I	d 2 R !	2.0		2.0	848	
	Aug.	7	15.6	I	d 3 R 10 f	1.1	2.1	1.6	857	
		12	15.6	I	d 2 R	2.0		2.0	862	
		24	15.3	I	d 4 R	4.0		4.0	874	
		29	15.4	I	d 5 R	5.0		5.0	879	
	Sept.	6	15.0	,	d 5 R			5.0	887	
	Oct.	7	15.8	I	for R 4 a c	9.3 8.8		9.1	918	

7106 S Vulpeculæ

Series IV.
(1900) $19^{\mathrm{h}} 44^{\mathrm{m}} 18^{\mathrm{s}}\left(+2^{\mathrm{s}} .46\right) ;+27^{\circ} 2^{\prime} .3 \quad\left(+0^{\prime} .15\right)$

Periód: $67^{\mathrm{d}} .5$, Periodic inequal.; Variation: $8 \frac{1}{2}^{\mathrm{x}}-9 \frac{1}{2}^{\mathrm{N}}$.
Comparison Stars :

Obs.	ASV.	BD.	Steps.	Magn.
d		$+26^{\circ} 3679$	0.0	8.1 BD
f		$27^{\circ} 3526$	7.0	9.1 "
e		$26^{\circ} 3672$	8.3	9.5 "

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD :

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline $1800+$ \& Gr. M. T. \& Sky \& Comparisons \& I \& II \& Mean \& $2400000+$ \& Remarks

\hline \multirow[t]{3}{*}{85 July} \& ${ }^{\text {h }}$. ${ }^{\text {a }}$ \& I \& d 6 e \& \& 5.0 \& 5.3 \& 09725 \&

\hline \& \& \& d 8 f \& \& 5.6 \& \& \&

\hline \& 15.5 \& 1 \& d 45 e \& \& 3.3
3.5 \& 3.4 \& 738 \&

\hline \multirow[t]{6}{*}{Aug. $\begin{array}{rr} \\ \\ 1 \\ 1 \\ 1 \\ & 30\end{array}$} \& 15.7 \& I \& d 4 e \& \& 3.3 \& 3.8 \& 758 \&

\hline \& \& \& d 6 f \& \& 4.2 \& \& \&

\hline \& 15.7 \& I \& d 7 e \& \& 5.8 \& 5.7 \& 764 \&

\hline \& 16.1 \& I \& d 78 e \& \& 5.6 \& 5.7 \& 767 \&

\hline \& \& \& d 8 f \& \& 5.6 \& \& \&

\hline \& 15.2 \& I \& d 6 e \& \& 5.0 \& 5.6 \& 784 \&

\hline \multirow[t]{14}{*}{Sept.} \& 15.6 \& I \& d 7 f
d 7 e
d \& \& 4.9
5.8 \& 5.7 \& 786 \&

\hline \& \& \& d 8 f \& \& 5.6 \& \& \&

\hline \& 14.7 \& I \& d 3 e \& \& 2.5 \& 2.7 \& 795 \&

\hline \& 15.6 \& I D \& d ${ }^{\text {d }} 5$ \& \& 2.8
4.2 \& 4.2 \& 799 \&

\hline \& \& \& d 6 f \& \& 4.2 \& \& \&

\hline \& 15.1 \& II D \& d 4 e \& \& 3.3 \& 3.4 \& 802 \&

\hline \& 15.1 \& DD \& d ${ }^{\text {d } 3 \mathrm{f}}$ \& \& 3.5
2.5 \& 2.7 \& 805 \&

\hline \& \& \& d 4 f \& \& 2.8 \& \& \&

\hline \& 15.1 \& DD \& d 3 e \& \& 2.5 \& 2.7 \& 806 \& .

\hline \& 15.0 \& DDD \& d 44 f
d 3 e \& \& 2.8
2.5 \& 3.0 \& 809 \&

\hline \& \& \& d 5 f \& \& 3.5 \& \& \&

\hline \& 14.5 \& " \& d 3 e \& \& 2.5 \& 2.7 \& 810 \&

\hline \& 15.0 \& " III \& d 46
d 6 e \& \& 2.8
5.0 \& 5.0 \& 811 \&

\hline \& \& \& d 7 f \& \& 4.9 \& \& \&

\hline \multirow[t]{18}{*}{Oct.} \& 14.3 \& II \& d 6 e \& \& 5.0 \& 5.0 \& 816 \&

\hline \& \& \& d 7 f \& \& 4.9 \& \& \&

\hline \& 14.4 \& 1 \& d ${ }^{4} 5 \mathrm{e}$ \& \& 3.3 \& 3.4 \& 820 \& not fainter!

\hline \& 14.9 \& I \& d 5 e? \& \& 4.2 \& 4.2 \& 823 \& Eye tired

\hline \& 15.5 \& I \& d 6 f ? ${ }^{\text {d }}$ \& \& 4.2 \& 4.6 \& 824 \&

\hline \& \& \& d 7 f \& \& 4.9 \& \& \&

\hline \& 15.7 \& III \& d 5 e \& \& 4.2 \& 4.2 \& 826 \&

\hline \& 15.2 \& I . \& d 6 f
d 4 e \& \& 4.2
3.3 \& 3.8 \& 828 \&

\hline \& \& \& d 6 f \& \& 4.2 \& \& \&

\hline \& 15.1 \& D \& d 6 e? \& \& 5.0 \& 5.3 \& 830 \& Near ${ }^{\text {d }}$

\hline \& 15.0 \& D \& d 8 f ? \& \& 5.6
4.2 \& 4.2 \& 831 \&

\hline \& \&) \& d 6 f ! \& \& 4.2 \& \& \&

\hline \& 14.7 \& DDD \& d 6 e \& \& 5.0 \& 5.3 \& 837 \&

\hline \& 14.1 \& " \& d 8 f
d 6 e

d \& \& 5.6
5.0 \& 5.3 \& 838 \&

\hline \& \& \& d 8 f \& \& 5.6 \& \& \&

\hline \& 14.2 \& III \& d 6 e? \& \& 5.0 \& 5.3 \& 841 \& Fog

\hline \& 14.4 \& I \& d 8 f ? \& \& 5.6
5.0 \& 5.3 \& 843 \&

\hline \& \& \& d 8 f \& \& 5.6 \& \& \&

\hline
\end{tabular}

METHOD BY STEPS:

1800+		Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks

(1900) $19^{\mathrm{h}} 46^{\mathrm{m}} 44^{\mathrm{s}}\left(+2^{\mathrm{s}} .31\right) ; \quad+32^{\circ} 39.7 \quad\left(+0^{\prime} .15\right)$

Period: $406^{\mathrm{a}} .02 \pm ; \quad$ Variation: $5^{\mathrm{n}}-13^{\mathrm{n}} .5$
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
	V 10	$+29^{\circ} 3684$	0.0	(5.3) BD
f	III 1	$+33^{\circ} 3587$	4.8	(5.4) "
e		$+32^{\circ} 3558$	9.2	(6.5) "
d	3	+33 ${ }^{\circ} 3602$	10.8	(6.9) "
c.	6	+ $32^{\circ} 3578$	16.3	8.3
a	7	$+32^{\circ} 3589$	17.3	8.5
b	III 20	$+32^{\circ} 3583$	19.6	9.1

Notes:

This star was not on the regular observing list, as it is generally too faint for a 3-inch telescope. The maximu of 1883 was observed in order to obtain some practical knowledge of this variable. The scale of steps could n be derived from the observations, and was therefore based on the steps of the Atlas. The stars c, a, b have the the steps: $13,23,46$, respectively, and the corresponding numbers of the brighter stars were derived from th magnitudes, by means of the formula at the end of the Catalogue. The brightest star g was then chosen for tl zero of the scale, and all the numbers were divided by 10 .

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

*) In telescope: $\chi>\mathrm{f}$; naked eye: $\chi<\mathrm{f}$.
(1900) $20^{\mathrm{h}} 9^{\mathrm{m}} 30^{\mathrm{s}}\left(+2^{\mathrm{s}} .74\right) ; \quad+16^{\circ} 25^{\prime} .4 \quad\left(+0^{\prime} .18\right)$

Period: $70^{4} .52 \pm$; Variation: $8 \frac{1}{2}^{n}-10^{\mathrm{N}}$.
Comparison Stars:

Obs.	ASV.	BD .	Steps	Magn.
h		$+15^{\circ} 4099$	0.0	8.5 BD.
g		+16 ${ }^{\circ} 4192$	3.0	8.7 "
f		- 4203	5.3	9.2 "
d		4200	8.3	9.3 "
a		$+16^{\circ} 4191$	13.3	9.5 "

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD:

1800		Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
85 Sept.	10	14.3	I	d 7 a!		11.8	11.8	09795	
				f 8 a!		11.7			
	13	14.5	I	d 6 a		11.3	11.5	798	
				f 8 a		11.7			
	14	15.4	I D	d 7 a		11.8	11.8	799	
	16	15.4	I D	f 8 a d 7 a		11.7 11.8	11.8	801	
				f 8 a		11.7			
	17	15.1	II D	d 6 a		11.3	11.1	802	
	19	14.7	D	f 7 a d 3 a		10.9 9.8	9.6	804	
			2	f 5 a		9.3	9.6	S04	
	20	14.8	DD	d 2 a		9.3	8.5	805	
	21	15.1	DDD	f 3 a d 2 a		7.7 9.3	8.5	806	
	21	15.1	D2	f 3 a		7.7	8.5	806	
	24	14.9	"	f 4 d !		6.5	6.5	809	
	25	14.5	"	$\mathrm{R}=\mathrm{f}$		5.3	4.3	810	
	26	14.9	III"	h 8 g h 9 g		(2.4) 2.7	3.5	811	
				h 8 f		4.2			
Oct.	1	14.1	II	h 9 f		4.8	3.8	816	$\mathrm{f}=\mathrm{g}$?
				h 9 g		2.7			
	5	14.1	I	h 7 f		3.7 2.7	3.2	820	$g>f!$
	"	15.7	"	h 8 ¢		4.2	3.5		
						2.7			
	8	14.8	I	h 9 g ?		2.7	3.4	823	Eye tired.
	9	15.3	I	g 9 f		5.1	4.9	824	
				g 3 d		4.6			
	10	15.1	III	g 9 f		5.1	5.1	825	
	11	15.3	III	g 4 d f 1 d !		5.1	5.9	826	
				g 6 d !		6.2			
	13	15.1	I	g 5 d !		5.6	5.8	828	
				f 2 d !		5.9			
	15	15.0	D	g 6 d		6.2	6.4	830	Near D
	16	14.9		f 4 d f 3 d		6.5 6.2	6.2	831	
	22	14.6	DDD	d 1 a?		8.8	(8.3)	837	
				f 3 a		7.7			
	23	14.1	"	f 9 d		7.5	7.5	838	
	26	14.3	III	f 7 d ?		7.4	7.6	841	
				f 3 a?		7.7			
	28	14.4	I	f 7 d		7.4	7.3	843	
	29	16.1		g 8 d f 10 d		7.2 8.3	8.0	844	
Nov.				f 3 a		7.7			
	4	15.2	II	f 9 d !		7.5	7.6	850	
				f 3 a		7.7			
	9	15.2	II	$f 8 \mathrm{~d}$		7.7	7.4	855	
				g 9 d		7.8			
				g 3 a		(6.1)			

METHOD BY STEPS:

87 May	24	17.0		f 1 R 2 d g 2 R 2 d	6.3 5.7	6.3 5.7	6.0	416	
June	15	16.3	I	${ }_{\text {d }} 1 \mathrm{R} 3 \mathrm{R}$	5.7 9.8	9.7	9.7	438	
	19	16.0	I	h 1 R 1 g	1.5	1.5	2.0	442	
				h 1 R 2 f	2.2	1.8			
	21	15.8		R4d ${ }_{\text {h } 2 \mathrm{R}} 1 \mathrm{~g}$	(4.3) 2.0	2.0	2.4	444	
				R2f	3.3		2.4	444	
July	10	15.8	I	f 2 R 1 d	7.3	7.3	7.3	463	
	15	15.9	I	f1 R 2 d	6.3	6.3	7.1	468	
				f1R3a	8.3	7.3			
	22	15.9	I	h2R0f	3.6		2.8	475	
				$\mathrm{R} 1 . \mathrm{g}$	2.0				
Aug.	6	15.3	II	f $2 \mathrm{R} 1 \mathrm{C}^{\text {f }} \mathrm{R} 4 \mathrm{a}$	7.3 8.3	7.3 8.0	7.7	490	
Sept.	6	16.2	II	g 1 R 2 f	3.7	3.8	4.1	521	
				g 1R3d	4.7	4.3			
	15	15.5	I		5.1 5.3	4.8	5.1	530	
	18	15.4	I	g 1 R 2 d	5.1	4.8	5.1	533	
Oct.	12	14.8		R 0 f f 2 R 1 d	5.3 7.3	7.3	6.8	557	
				g 2 R 1 d	6.2	6.5			
	18	14.8	II	$\mathrm{f}^{4} \mathrm{R} 5 \mathrm{a}$	8.8	8.9	9.0	563	
				d 1 R g 2.5 R 1.5 f	9.3				
Nov.	$\begin{aligned} & 11 \\ & 17 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.0 \end{aligned}$	$\mathrm{I}_{\text {I }}$	${ }_{\text {g } 2.5 \mathrm{~F}}^{\mathrm{h}} \mathrm{l} 1.5 \mathrm{f}$	4.6		4.5 3.5	587 593	
				h 3 R 1 g h 3 l f	2.5 3.7	2.2 4.0	3.5	593	
				h 3 R 3 d	4.2	4.2			
88 May	28	16.3	I	d 3 R 0 a	12.3		12.3	786	
June	2 30	16.0 15.9	I	d 1 R 2 a f 2 d	10.3 7.3	10.0 7.3	10.2 7.7	791 819	
	30	15.9	II		7.3 8.3	7.3 8.0	7.7	819	
July	11	16.5	I	g 1 R 1 f	4.1	4.1	4.0	830	
				h3R1f	3.7	4.0			
	29	16.8	I	f 1 R 2 d	6.3	6.3	6.3	848	Seeing poor

	1800		Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
88	Aug.	7	15.8	I	d 4 R 1 a!	12.3	12.3	12.3	$10 \cdot 857$	
		12	15.9	I	a 1 R	14.3		(14.3)	862	
		24	15.4	I	f1R1d	6.8	6.8	6.8	874	
		29	15.6	I	g 2 R 1 f	4.5	4.5	4.4	879	
	Sept.	6	15.1	I	R 4 d f 1 R 3 d	4.3 5.8	6.0	5.9	887	
	Oct.	7	16.0	I	d 1 R 4 a	9.3	9.3	9.3	918	

(1900) $20^{\mathrm{h}} 10^{\mathrm{m}} 5^{\mathrm{s}}\left(+2^{\mathrm{s} .90)} ; \quad+8^{\circ} 47^{\prime} .1 \quad\left(+0^{\prime} .18\right)\right.$

Period: $285^{\mathrm{a}} .5$, periodic inequal.?; Variation: $8^{\mathrm{n}}-12^{\mathrm{n}}$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
e	1	$+8^{\circ} 4393$	0.0	(6.7)
d	2	$9^{\circ} 4452$	7.0	8.4
c	4	$8^{\circ} 4383$	10.5	8.7
a	7	4389	14.8	9.0
b	10	4385	16.8	9.2
f	15	4384	20.8	9.8
h	14	$+8^{\circ} 4388$	(20.8)	9.6
g	27	23.8	11.0

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD:

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean

METHOD BY STEPS :

87 May June	24	17.2		R barely vis.			≥ 24	10416
	15	16.5	I	a 1 R 1 b	15.8	15.8	15.8	438
	19	16.1	I	c 3 R 2 b	14.2	14.3	13.5	442
				c 3 R 3 a	12.7	12.7		
	21	15.8		c 2 R 3 b	13.1	13.0	13.0	444
				R 2 a	12.8			
	23	15.8	I	d 3 R 3 a	10.4	10.9	10.6	446
				R 0 c	10.5			
	25	15.6	II	d 3 R 3 a	10.4	10.9	10.3	448
				R 1 c	9.5			
July	10	15.9	I	R 2 d	5.0		6.3	463
				R 3 c	7.5			
	15	16.0	I	e 5 R 2 d	5.0	5.0	5.7	468
				e 5 R 3 c	6.3	6.6		
	22	16.0	I	e 4 R 3 d	4.0	4.0	4.7	475
				e 4 R 4 c	5.3	5.3		
Aug.	6	15.5	I	R 1 d	6.0		6.3	490
				R 4 c	6.5			
Sept.	6	16.3	II	b 2 R 2 f	18.8	18.8	18.8	521
	16	15.1	II	f1R2g	21.8	21.8	21.8	531
	18	15.5	I		21.8	21.8	21.8	533
Oct.	12	14.9		R barely vis.			>24	557
88 June	2	16.1	I	a 1 R 1 b	15.8		15.4	791
				c 3 R 1 b	14.7	15.2		

Nova Andromedæ 1885

$$
\begin{gathered}
(1900) 0^{\mathrm{h}} 37^{\mathrm{m}} 15^{\mathrm{s}}\left(+3^{\mathrm{s}} .26\right) ;+40^{\circ} 43^{\prime} .2 \quad\left(+0^{\prime} .33\right) \\
\text { Variation : } 7^{\mathrm{m}}-<13^{\mathrm{M}} \\
\text { Comparison Stars: }
\end{gathered}
$$

Obs.	ASV.	BD .	Steps	Magn.
A	$+40^{\circ} 158$	7.5 BD.
D	151	8.9
B	156	9.0
C	$+40^{\circ} 154$	9.0

Notes:

The 3-inch equatorial was evidently unable to show the variations of this star so as to give a knowledge of its light curve. The feeble attempt, which the novelty of this phenomenon seemed to demand, is here reproduced, with a reduction to the magnitudes of the BD . scale.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD:

II. Observations made by Arthur Zaiser from 1884 to 1887.

These observations were made by Arthur Zaiser, a student of the College in Prairie du Chien, Wisconsin. They were all made with the naked eye, aided sometimes by an opera-glass. The value of one step differs widely for the different variables, especially for the brighter ones, and amounts on the average to almost 0.3 of a magnitude.

1411
λ Tauri
Series V.
(1900) $3^{\mathrm{n}} 55^{\mathrm{m}} 8^{\mathrm{s}}\left(+3^{\mathrm{s}} .32\right) ;+12^{\circ} 12^{\prime} .5 \quad\left(+0^{\prime} .17\right)$

Period: $3^{\mathrm{d}} 22^{\mathrm{h}} 52^{\mathrm{m}} .02$; Var.: $3^{\mathrm{x}} .4-4^{\mathrm{n}} .2$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
	1	$+8^{\circ} 511$	0.0	3.8
σ	27	$15^{\circ} 612$	0.0	3.8
γ°	2	$9^{\circ} 439$	3.8	3.8
μ	26	$8^{\circ} 657$	4.5	4.3
f	3	$+12^{\circ} 486$	10.0	4.3

Notes:
The observations of this star, which is of the Algol-type, were made for practice rather than with a view of obtaining exact times of minima. For this reason no particular care was taken of applying a correction to the watch, which may have been two or three minutes wrong.

| $1800+$ | Gr. M.T. | Sky. | Comparisons | I | .II | Mean | 2400000 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad Remarks

DECIMAL METHOD :

84 Oct.	11	$15^{\mathrm{n}} 16^{\mathrm{m}}$	II	03 f	3.0	2.6	09461	F G.
	12	1520	I	- 6	2.3 3.0	2.9	462	
	12	1520	1	063 07ξ	3.0 2.7	2.9	462	
	16	1538	II	03 f	3.0	2.9	466	
				07%	2.7			
Nov.	7	1544	I	03 f	3.0	2.9	488	
				078	2.7			
	18	1512	I	o 3 f	3.0	3.0	499	
				- 5 §	3.0			
Dec.	9	1422	II	o 2 f	2.0	2.4	520	
				o 7 §	2.7			
	18	$15 \quad 5$	I	o 3 f	3.0	3.0	529	$4^{\text {n }}$ after Eph. Min.
				o 8 今	3.0			
85 Jan.	9	1535	I	o 2 f	2.0	2.7	551	
				- 9 \%	3.4			
	11	1515	I	o 3 f	3.0	2.7	584	$4^{\text {b }}$ before Eph. Min.
				- 6 \%	2.3			
	7	1442	I	o 4 f	4.0	3.7	608	F G. $2^{\text {n }}$ after Eph. Min
				$\bigcirc 9 \xi$	3.4			
	9	$15 \quad 9$	II	- 2 f	2.0	2.0	610	"
				05ξ	1.9			
Oct.	8	1542	I	03 f	3.0	3.7	823	.
				$\xi 1 \mathrm{f}$	4.4			
	9	1546	I	o 2 f	2.0	2.9	824	
				$\xi 0 \mathrm{f}$	3.8			
Nov.	9	1513	I	o 3 f	3.0	3.7	855	
				$\xi 1 \mathrm{f}$	4.4			
Dec.	6	1516	I	- 2 f	2.0	2.9	882	
				$\xi 0 \mathrm{f}$	3.8			
	11	1516	I	- 2 f	2.0	2.0	887	
				- 5 \%	1.9			
S6 Jan.	6	1333	III	01 f	1.0	1.5	913	
				05%	1.9			
	9	1510	I	07 f $\xi 5 \mathrm{f}$	7.0 6.9	7.0	916	$5 \frac{1}{2}^{\text {b }}$ before Eph. Min.
Febr.	1	1510	I	- 2 f	2.0	2.0	939	
				0 5ξ	1.9			
	2	1342	II	o 9 f	9.0	8.6	940	Eph. Hel. Min. $14^{\text {h }} 7^{\text {m }}$
				$\xi 7 \mathrm{f}$	8.1			
	"	$14 \quad 9$	"	- 9.5 f	9.5	9.2	"	
				$\xi 8 \mathrm{f}$	8.8			
	8	1455	III	o 3 f	3.0	3.4	946	
				$\xi 0 \mathrm{f}$	3.8			
	22	146	II	o 4 f	4.0	4.2	960	F G.
				$\xi 1 \mathrm{f}$	4.4			
Mar.	2	1528	I	o 2 f	2.0	2.2	968	
				06ξ	2.3			

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	2400000	Remarks
86 Oct. 29	$15^{\mathrm{h}} 15^{\mathrm{ma}}$	I	03 f 0 7.		3.0 2.7	2.9	10209	

87 Mar. 24	1525	II	$\gamma 2 \lambda 2 \mu$	2.3	2.3	2.3	355	F G. Eph. Hel. Min. $15^{\mathrm{h}} 43^{\mathrm{m}}$
	1538	"	r3ג2 μ	2.7	2.8	2.8		
"	1549	"	r3^1 μ	3.4	3.3	3.4	"	"
"	1558	"	$\gamma 4 \lambda 0.5 \mu$	4.0	4.0	4.0	"	"
"	169	"	$\gamma 4 \lambda 0.5 \mu$	4.0	4.0	4.0	"	
"	1625	"	$\gamma 5^{2} \lambda 0.5 \mu$	4.1	4.5	4.3	"	" Low.
28	1433	II	$\gamma 4 \lambda 0 \mu$	4.3	4.5	4.4	359	F G. Eph. Hel. Min. $14^{\mathrm{h}} 35^{\mathrm{m}}$
"	1439	"	$\gamma 4 \lambda 0.5 \mu$	4.0	4.0	4.0		"
"	1451	"	¢ 420 \%	4.3	4.5	4.4	"	"
"	1510	"	$\gamma 4 \lambda 1 \mu$	3.6	3.8	3.7	"	"
"	1525	"	$\gamma 3 \lambda 1.5 \mu$	3.0	3.3	3.2	"	"
"	1535	"	r3 22μ	2.7	2.8	2.8	"	"

$2098 \quad \alpha$ Orionis \quad Series V.

Irregularly periodic; Variation: $1^{n}-1^{x} .4$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
β	39	- $8^{\circ} 1063$	2.4	0.3
${ }^{\circ}$	9	+16 ${ }^{\circ} 629$	3.4	1.1
r	43	+ $6^{\circ} 919$	6.2	1.6

Notes:
The comparison star a is a Tauri. Five comparisons with Sirius were omitted, as this star is too bright and too different in color to give useful results. The observations may not contribute much to the knowledge of the irregular variations of this star, since it is not a suitable object for the method by steps, and seems to require a photometer.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD:

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$
Remarks							

METHOD BY STEPS:

Jan.	28	14.8	II	$\beta .0 \times 2 \gamma$	3.3		3.3	10300
Febr.	12	14.4	I	B1 $\alpha 4 \gamma$	2.8	3.2	3.0	315
	16	15.1	II	$\beta 0 \sim 5 \gamma$	1.8		1.8	319
Mar.	13	14.7	II	B $0 \times 6 \gamma$	1.3		1.3	344
	17	14.4	II	$\beta 0.50 .4 \gamma$	2.6	2.8	2.7	348
	24	15.7	II	${ }_{\alpha} 1 \beta$	1.4		1.8	355
	28	15.2	II	a 4γ ¢ 0 $a_{a} 3 \gamma$	2.2 2.8		2.8	359

2509	ζ Geminorum	Series V
$(1900) 6^{\mathrm{n}} 58^{\mathrm{m}} 11^{\mathrm{s}}\left(+3^{\mathrm{s}} .56\right) ;+20^{\circ} 43^{\prime} .0$	$\left(-0^{\prime} .09\right)$	

Period: $10 .{ }^{d} 15382 ; \quad$ Variation: $3^{\mathrm{n}} .7-4^{\mathrm{x}} .5$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
λ	74	$+16^{\circ} 1443$	0.0	3.7
δ	75	$22^{\circ} 1645$	2.1	3.5
d	69	$+21^{\circ} 1405$	15.0	5.3

Notes:
The step-interval between δ and d is too large to yield concordant results. The table of comparison stars in the Atlas (Ser. V, ch. VI) shows that the comparison star d has not been employed by any other observer.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD :

METHOD BY STEPS:

Series V.

(1900) $14^{\mathrm{b}} 55^{\mathrm{m}} 38^{\mathrm{s}}\left(+3^{\mathrm{a}} .20\right) ;-8^{\circ} 7^{\prime} .3\left(-0^{\prime} .24\right)$

Period: $2^{\mathrm{a}} 7^{\mathrm{h}} 51^{\mathrm{m}} 22^{\mathrm{a}} .8$; Variation: $5^{\mathrm{m}} .0-6^{\mathrm{M}} .2$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
a	6	$-3^{\circ} 3696$	0.0	4.6
b	-9	$-1^{\circ} 2991$	1.9	5.0
c	9	$-4^{\circ} 3783$	5.4	6.0

Notes:
Although the observations of this Algol-star were not made with a systematic plan to obtain the exact time of the minima, still they determine the ascending branch of the light curve on three different occasions.

$1800+$	Gr. M. I..	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD:

84 Sept.	11 17	$14^{\mathrm{h}} 14^{\mathrm{m}}$ 1348	I I	a 1 c a 4 b a 9 c b 5 c	0.5 0.2 4.9 3.7	0.4 4.3	09431 437	F G. used throughout. $2^{\text {n }}$ after Eph. Min.
85 May	5	1545	II	a 1 c	0.5	0.8	667	
	8	162	I	a 5 b a 3 c	1.0 1.6	2.0	670	
				b 1 c	2.3	2.0	67	
	13	16.46	III	a 4 c	2.2	2.2	675	*)
	4	1540		b 1 c	2. 2	2.0		
June	4	1540	1	a 3 c b 1 c	1.6 2.3	2.0	697	
	8	1556	I	a 2 c b 0 c	1.1 1.9	1.5	09701	
86 Apr.	27	1527	II	a 1 c	0.5	0.9	10024	
May	1.	1451	I	a 7 b a 8 c	1.3 4.3	4.0		
	1.		I	a b 5 c	4.3 3.7	4.0	028	
	"	150	"	a 8.5 c	4.6	4.2	"	Eph. Hel. Min. $15^{\text {b }} 0^{\text {m }}$
	"	1513	"	b 5 c a 8 c	3.7 4.3	4.0	"	
				b 5 c	3.7			
	"	1533	"	a 8 c	4.3	4.0	"	
				b 5 c	3.7			
	"	- 1558	"	a 7 c	3.8	3.8	"	
				b 6 c	4.0			
	"	167	"	a 6 c	3.2	3.5	"	
				b 5 c	3.7			
	"	1617	"	a 5 c b 4 c	2.7 3.3	3.0	"	
	6	158	III	a 2 c	1.1	1.1	033	
				a 5 b	1.0			
	18	$15 \quad 5$	I D	a 3 c	1.6	1.6	045	Near (
				a 8 b	1.5			
	27	1534	I	a 1 c	0.5	0.8	054	
	29	161	III	a 6 b a 3 c	1.1	1.8	056	
				a 10 b	1.9			$3{ }^{\text {a }}$ after Eph. Min.
June	2	1543	I	a 1 c	0.5	0.8	060	
				a 6 b	1.1			
	17	1515	I DD	a 3 c	1.6	2.0	075	
				b 1 c	2.3			

METHOD BY STEPS:

*) The original has : a $1 \mathrm{c}, \mathrm{b} 4 \mathrm{c}$, which must be an error in recording.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
87 May	$15^{\mathrm{m}} 5^{\text {mi }}$	II	a $4 \delta 1 \mathrm{c}$	4.2	4.3	4.2	10412	
	1513		b 2 o 1 c	4.2	4.2			
	1513			4.2 4.2	4.3 4.2	4.2		Ephem. Hel. Min. $15^{\mathrm{h}} 10^{\mathrm{ma}}$
	1524	"	a 3 or 1 c	3.7	4.1	4.1	"	
			b 2 or 1 c	4.2	4.2			
	1537	"	a 3 \% 2 c	3.2	3.2	3.2	"	
	1549	"	a 2 o 3 c	2.2	2.2	2.5	"	
			b $1 \delta 3 \mathrm{c}$	2.7	2.8			
	1459	III D	a 5 \% 1.5 c	4.5	4.1	4.1	419	Ephem. Hel. Min. $14^{\text {n }} 43^{\text {an }}$
	158	"	b 301.0 c $\mathrm{a} 4 \delta 2 \mathrm{c}$	3.5 3.7	4.2	3.4	"	
			b 1 ¢ 2 c	3.2	3.1			
	1519	"	a $4 \delta 2 \mathrm{c}$	3.7	3.6	3.7	"	
	1529	"	b 2 o 2 c	3.7	3.7			
			b $2 \delta 2.5 \mathrm{c}$	3.4	3.4			
	1550	"	a 2.5 o 3 c	2.5	2.5	2.6	"	
			blo 3 c	2.7	2.8			

$6181 \quad \alpha$ Herculis Series V.
(1900) $17^{\mathrm{h}} 10^{\mathrm{m}} 5^{\mathrm{s}}\left(+2^{\mathrm{s} .73)} ; \quad+14^{\circ} 30^{\prime} .2\left(-0^{\prime} .07\right)\right.$

Irregular; Variation: $3^{n} .1-3^{\mathrm{n}} .9$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
a	69	$+12^{\circ} 3252$	0.0	2.1
δ	52	$+25^{\circ} 3221$	1.4	3.1
κ	68	$+9^{\circ} 3298$	2.5	3.5

Notes:

Comparison star a is α Ophinchi, and κ is κ Ophinchi, while δ belongs to the constellation Hercules. Another comparison star, fainter than κ, should have been chosen, at least for the observations in 1887, for which formula II cannot now be employed. Charta X . of the Atlas will show that γ, ε, ξ Herculis have been used by other observers.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD :

METHOD BY STEPS:

6202 u Herculis Series V.
(1900) $17^{\mathrm{h}} 13^{\mathrm{m}} 38^{\mathrm{s}} \quad\left(+2^{\mathrm{s}} .21\right) ;+33^{\circ} 12^{\prime} .3 \quad\left(-0^{\prime} .07\right)$

Irregularly periodic; Variation: $4^{\mathrm{x}} .6-5^{\mathrm{x}} .4$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
ε	48	$+31^{2} 2947$	$\ldots \ldots$.	3.8
w	56	$+32^{2} 2896$	$\ldots \ldots$.	5.3
c	58	$+34^{\circ} 2971$	$\ldots \ldots \ldots$	5.8

Notes:

The observations, being all made by the decimal method, afford no means of establishing an independent scale. They were reduced directly to the magnitudes of the HP. scale, which is given in the last column of the abvoe table.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD:

$6758 \quad \beta$ Lyræ Series V.
$(1900) 18^{\mathrm{h}} 46^{\mathrm{m}} 23^{\mathrm{s}}\left(+2^{\mathrm{n}} .21\right) ;+33^{\circ} 14^{\prime} .8 \quad(+0.07)$
Period: $12^{\mathrm{d}} 21^{\mathrm{n}} 47^{\mathrm{m}} 23^{\mathrm{s}} .72+$; Variation: $3^{\mathrm{N}} .4-4^{\mathrm{n}} .5$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
γ	23	$+32^{\circ} 3286$	0.0	3.3
¢	$\left\{\begin{array}{l}20 \\ \hline 1\end{array}\right.$	$\left.+36^{\circ} 3307\right\}$	3.0	$\{\quad 5.6$
,	$\left\{\begin{array}{l}21 \\ 17\end{array}\right.$	+36 +3319	3.0	1 4.5
\%	17	+3703223.	4.3	4.2 \& 5.8

Notes:

The last two columns of the above table show the advantage of establishing a scale for the comparison star: from the observations themselves, independently of photometric measures made by other observers and by other means. A computation of the combined effect of two component stars would bring a new element of uncertainty into the direct estimates of the observer.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

METHOD BY STEPS:
87 Apr. 18

0.9	1.1

$380 \mid$ F G.

7124
η Aquilæ
Series V.
(1900) $19^{\mathrm{n}} 47^{\mathrm{m}} 23^{\mathrm{s}}\left(+3^{\mathrm{s}} .06\right) ; \quad+0^{\circ} 44^{\prime} .9 \quad\left(+0^{\prime} .15\right)$

Period: $7^{\mathrm{d}} .176381$; Variation: $3^{\mathrm{x}} .5-4^{\mathrm{x}} .7$
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
γ	63	$+10^{\circ} 4043$	0.0	2.8
β	70	$+6^{\circ} 4357$	3.0	3.8
μ	52	$+7^{\circ} 4132$	5.8	4.5

Notes:

Since the light curve of this star is well determined, these observations, although few in number, may be of use in supplementing other series.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD:

METHOD BY STEPS:

(1900) $21^{\mathrm{h}} 40^{\mathrm{m}} 27^{\mathrm{s}}\left(+1^{\mathrm{s}} .83\right) ;+58^{\circ} 19^{\prime} .3 \quad\left(+0^{\prime} .27\right)$

Irregularly periodic; Variation: 4^{x} ? -6^{n} ?
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magı.
ς	36	$+57^{\circ} 2475$	3.54	3.7
ι	40	$+65^{\circ} 1814$	3.62	3.7
ε	38	$+56^{\circ} 2741$	4.24	4.2

Notes:

The scale of steps is in this case not deduced from the observations, but is simply the scale of the H. P magnitudes (vol. XIV). The reductions were made in 1889, in order to compare these observations with the simultaneous ones of Mr. Gore, published in the Proceedings of the Royal Irish Academy, 3d Ser., vol. I, No. I As the latter were reduced to the H. P. scale, the former were reduced to the same. The observations made by the method of steps show, however, that they do not fit well into this scale.

| $1800+$ | Gr. M. T. | Sky | Comparisons | I | II | Mean | $2400000+$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Remarks

DECIMAL METHOD:

METHOD BY STEPS :

Jan.	28	12.3		\% $4 \mu 68$	2.89	3.82	3.36	300	
Feb.	12	14.9	I	$53 \mu 78$	1.89	3.75	2.82	315	
	16	15.3	'II	$\zeta 2 \mu 5=$	2.39	3.74	3.07	319	
Mar.	13	14.9	II		4.89	4.04	4.47	344	
	17	14.6	I	${ }_{6} 1 \mu 38$	2.89	3.71	3.30	348	
	24	15.9	II	$\zeta 1 \mu 3=$	2.89	3.71	3.30	355	F G
	28	15.3	II	\% $1 \mu 4$ \%	2.39	3.68	3.04	359	
Apr.	18	15.6	II	$\zeta 1 \mu 38$	2.89	3.71	3.30	380	"
	20	15.3	I	\% $2 \mu 2$ \%	3.89	3.89	3.89	382	
	25	16.0	I	$\zeta 1 \mu 3 \varepsilon$	2.89	3.71	3.30	387	"
May	15	15.8	II	$\zeta^{\prime} 1 \mu 1 \varepsilon$	3.89	3.89	3.89	407	"
	19	15.9	II	$\zeta 1 \mu 3$ в	2.89	3.71	3.30	411	
June	14	15.9	II	${ }_{51 \mu} 1^{\prime}{ }_{8}$	2.89	3.71	3.30	437	
	17	16.5	I	${ }_{\zeta} 1 \mu 28$	3.39	3.77	3.58	440	
	23	15.6	I	$\zeta 2^{\mu} 2$ 2	3.89	3.71	3.80	446	
July	6	16.7	D	$\zeta 2 \mu 2.5$ ع	3.64	3.94	3.79	459	
	10	16.2	I	$\zeta 2 \mu 3 \varepsilon$	3.39	3.84	3.62	463	
Aug.	15	16.8	II	$\zeta 2 \mu 2 \varepsilon$	3.89	3.89	3.89	499	

8073
(1900) $22^{\mathrm{h} .} 25^{\mathrm{m}} 27^{\mathrm{s}}\left(+2^{\mathrm{s}} .22\right) ; \quad+57^{\circ} 54^{\prime} .2\left(+0^{\prime} .31\right)$

Period: $5^{\mathrm{d}} 8^{\mathrm{h}} 47^{\mathrm{m}} 39^{\mathrm{s}} .3-$; Variation: $3^{\mathrm{m}} .7-4^{\mathrm{m}} .9$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
$\boldsymbol{\zeta}$	36	$+57^{\circ} 2475$	0.0	3.7
\vdots	40	$65^{\circ} 1814$	0.8	3.7
ε	38	$56^{\circ} 2741$	4.6	4.2
ξ	35	$+63^{\circ} 1802$	5.7	4.4

Notes:
Owing to its short period, this star would require more systematic observations. The accurate knowledge of its period, however, will make these observations useful.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks

DECIMAL METHOD:

METHOD BY STEPS:

Jan.	28	12.2	II	$\zeta 3 \delta 6 \varepsilon$	0.8	1.5	1.2	300	
Febr.	12	14.8	I	$\zeta 7 \delta 0 \varepsilon$	5.8		5.8	315	
	16	15.2	II	$\zeta 5 \delta 18$	4.3	3.8	4.1	319	
Mar.	13	14.8	II	$\zeta 3 \delta 28$	2.8	2.8	2.8	344	F G.
	17	14.5	I	$\zeta 3 \mathrm{f} 18$	3.3	3.4	3.4	348	
	24	15.9	II	$\zeta 2$ ¢ 3 \&	1.8	1.8	1.8	355	"
	28	15.3	II	$\zeta 2 \delta 38$	1.8	1.8	1.8	359	"
Apr.	18	15.6	II	$\zeta 2$ ¢ 2 ع	2.3	2.3	2.3	380	"
	20	15.3	I	$\zeta 3 \delta 2 \varepsilon$	2.8	2.8	2.8	382	"
	25	16.0	I	${ }_{\zeta} 3$ \% 2 ع	2.8	2.8	2.8	387	"
May	15	15.8	II	${ }_{\zeta}^{6} 1{ }^{\circ} 1 \varepsilon$	2.3	2.3	2.3	407	"
	19	15.9	II	$\zeta 2 \mathrm{f} 2 \mathrm{\varepsilon}$	2.3	2.3	2.3	411	
June	14	15.8	II	$\zeta 2 \delta 2 \varepsilon$	2.3	2.3	2.3	437	
	17	16.5	I	$\zeta 0.5{ }^{\circ} 38$	1.0	0.7	0.9	440	
	23	15.5	II	${ }_{5} 1$ ¢ 3 e	1.3	1.1	1.2	446	
July	6	16.6	D	$\zeta 3$ \% 1 ¢	3.3	3.4	3.4	459	
	10	16.1	I	${ }_{5}^{5} 2{ }_{\text {¢ }} 3$ ¢	1.8	1.8	1.8	463	
Aug.	15	16.8	II	${ }_{\zeta} 0{ }_{\delta} 4^{\varepsilon}$	0.3		0.3	499	

*) The original had $\varepsilon 2 \zeta, \varepsilon 4^{\prime}$, corrected into $\zeta 2 \varepsilon, 44 \varepsilon$. The reading given above is more probable.

Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
ρ	$\cdots \cdots$.	$+31^{\circ} 2628$	0.0	3.6
	$\cdots P$.			
c	$\cdots \cdots$	$+30^{\circ} 2536$	2.0	4.5
	$+27^{\circ} 2388$	6.1	5.9	

Notes:

This star was considered variable by Schmidt in 1867, but was not entered in Schönfeld's Catalogue II (1875). It is in all three of Chandler's catalogues under the designation W Bootis, with the number 5274 . In the Potsdam Photometric Durchmusterung II (Bd. 13, 1899, Note to No. 2517), however, the star is pronounced: not variable. The following observations may serve to confirm this judgment. The letter c for the third comparison star is not Bayer's.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$

DECIMAL METHOD:

84 Sept.	9	$55^{\text {h }} 5$	I	$\rho 7 \mathrm{c}$	4.3	4.0	09429	F G. used throughout.
	13	14.3	III	$\sigma 4 \mathrm{c}$ $\rho 88 \mathrm{c}$	3.6 4.9	4.5	433	
				$\sigma 5 \mathrm{c}$	4.1			
	17	14.1	I	$\rho 6 \mathrm{c}$	3.7	3.5	437	
	20	14.5	I	\circ $\mathrm{c}_{\text {c }}^{\text {c }}$	3.2 4.3	3.8	440	
				$\sigma 3 \mathrm{c}$	3.2			
85 May	3	15.2	II	$\rho 7 \mathrm{c}$	4.3	3.8	665	
				$\sigma 3 \mathrm{c}$	3.2			
	8	15.2	I	$\rho 6 \mathrm{c}$	3.7	3.7	670	
June	18	15.6		$\checkmark 4 \mathrm{c}$	3.6 4.3	3.6	711	
		15.6	D	$\rho 7 \mathrm{c}$ σ	4.3 2.8	3.6	71	
July	2	15.6	I	$\rho 9 \mathrm{c}$?	(5.5)	(4.8)	725	N. E. obs. doubtful.
	6	15.9	III	$\begin{array}{r}\sigma \\ \rho 9 \mathrm{c} \\ \hline\end{array}$	-5.5	4.6	729	
Sept.				$\sigma 4 \mathrm{c}$	3.6			
	14	15.4	II D	$\rho 8 \mathrm{c}$	4.9	4.3	09799	
				$\sigma 4 \mathrm{c}$				
86 Apr.	4	15.5	II	$\rho 8 \mathrm{c}$	4.9	4.5	10001	
	6			$\sigma 5$ c	4.1			
		15.8	I	$\rho 6 \mathrm{c}$	3.7	3.6	003	
	27	14.8	II	$\sigma 3.5 \mathrm{c}$ $\rho 7 \mathrm{c}$	3.4 4.3	4.2	024	
				${ }_{\sigma} 5 \mathrm{c}$	4.1			
May	1	15.5	II	$\rho 7 \mathrm{c}$	4.3	3.8	028	
				¢ 3 c	3.2			
	6	14.9	III	$\rho 8 \mathrm{c}$	4.9	4.3	033	
	11	15.5		$\sigma 4 \mathrm{c}$	3.6	2.8	038	
		15.5	I 2	ρ σ σ 1 c	2.4	2.8	038	
	18	15.5	DDD	¢ 63	3.7	3.3	045	
	27	15.3	I	$\begin{aligned} & \sigma \\ & \sigma 2 \mathrm{c} \\ & \rho\end{aligned}$	2.8 4.9	4.3	054	
				$\sigma 4 \mathrm{c}$	3.6			
June	2	15.6	I	$\rho 8 \mathrm{c}$	4.9	4.5	060	
					4.1			
	17	15.3	I DD	$\rho 7 \mathrm{c}$ $\sigma 3 \mathrm{c}$	4.3 3.2	3.8	075	

METHOD BY STEPS:

87 Mar.	14.9	I	$\rho 6 \mathrm{~W} 2 \mathrm{c}$	5.0	4.6	4.7	348
	14.8		$\sigma 3 \mathrm{~W} 2 \mathrm{c}$	4.5	4.5		
		II	$\rho 4 W 4 \mathrm{c}$	3.0	3.0	3.1	352
			$\sigma 2 \mathrm{~W} 4 \mathrm{c}$	3.0	3.4		

2 Serpentis

(1900) $18^{\mathrm{h}} 51^{\mathrm{m}} 15^{\mathrm{s}} \quad\left(+2^{\mathrm{s} .98)} ;+4^{\circ} 4^{\prime} .0 \quad\left(+0^{\prime} .08\right)\right.$

Relative brightuess $0.4-1.4$?
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
γ	63	$+10^{\circ} 4043$		0.0
β	70	$+6^{\circ} 4357$	2.0	2.8
μ	52	$+7^{\circ} 4132$	4.2	4.8

Notes:

The numbers of the column ASV. refer to the chart of η Aquilx (Ser. V, Charta XIV), as the comparison stars of ϑ Serpentis and η Aquilæ are the same. The star is double, and the relative brightness of the two components is suspected of variability (See Potsdam Photom. Durchmusterung I, p. 482, Note to 2610-11). In the following observations the two components were estimated as one star.

$1800+$	Gr. M. T. Sky	Comparisons	I	II	Mean	$2400000+$	Remarks

DECIMAL METHOD:

METHOD BY STEPS:

87 May	18	16.7	I		2.6 2.0	2.5	2.4	410
June	14	15.8	II	r1\% 2.5 \%	1.3	1.2	1.5	437
	16	15.8	II		2.0 2.1	2.1	2.7	439
				¢ 2 \%	4.0			
	17	16.4	I	¢ 3 \% 2 "	2.6	2.5	2.7	440
	23	15.7	II		3.0 2.1	2.1	2.1	46
				¢0\%*	2.0		2.1	46
July	10	16.1	I	r3*2\%	2.6	2.5	2.7	463
				$\beta 1$ \%	3.0			
	18	16.5	II	\% 3 \% 5μ	1.1	1.6	1.1	471
Aug.					0.5			
	15	16.7	II		3.1 3.0	2.8	3.0	499

(1900) $20^{\mathrm{h}} 14^{\mathrm{m}} 6^{\mathrm{s}}\left(+2^{\mathrm{s}} .21\right) ;+37^{\circ} 43^{\prime} .3\left(+0^{\prime} .18\right)$

Magnitude: PD $=5^{\mathrm{x}} .0, \mathrm{HP} .=4^{\mathrm{x}} .9$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
b^{2}	31	$+36^{\circ} 3907$	0.0	4.8
$\mathrm{~b}^{3}$	34	$+36^{\circ} 3955$	1.0	5.1
c	37	$+36^{\circ} 3998$	3.0	5.5

Notes:

Although no variations have been established in the brightness of this star for the last two hundred years, it is in all the catalogues of Schänfeld and Chandler, because it was subject to considerable fluctuations in the seventeenth century. The following observations may be of use to future discussions of its variability. The numbers in the column ASV. refer to Charta XV, Series V.

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks

DECIMAL METHOD:

84 Sept.	11	15.5	I	$b^{2} 5 c$ $b^{2} 10 b^{3}$	1.5	1.3	09431	F G. used throughout.
	13	14.7	III	$\mathrm{b}^{2} 7 \mathrm{c}$	2.1	2.1	433	
				$\mathrm{b}^{3} 5 \mathrm{c}$	2.0			
	17	15.6	I	$\mathrm{b}^{2} 5 \mathrm{c}$	1.5	2.0	437	
				$\mathrm{b}^{3} 7 \mathrm{c}$	2.4			
	24	15.7	I	$\mathrm{b}^{2} 7 \mathrm{c}$ $\mathrm{b}^{3} 9 \mathrm{c}$	2.1 1.8	2.0	444	
Oct.	10	15.3	I	$\mathrm{b}^{\circ} 7 \mathrm{c}$	2.1	1.5	460	
				$\mathrm{b}^{2} 9 \mathrm{~b}^{3}$	0.9			
	12	15.6	I	$\mathrm{b}^{2} 4 \mathrm{c}$	1.2	1.0	462	
				$\mathrm{b}^{2} 8 \mathrm{~b}^{3}$	0.8			
	16	15.4	II	$\mathrm{b}^{2} 5 \mathrm{c}$	1.5	1.9	466	
				- ${ }^{3} 6 \mathrm{c}$	2.2			
Nov.	7	15.4	I	$\mathrm{b}^{2} 5 \mathrm{c}$	1.5	1.7	488	
				$\mathrm{b}^{3} 4 \mathrm{c}$	1.8			
	18	15.0	I	${ }^{\mathrm{b}^{2} 6}{ }^{3} \mathrm{c}$	1.8	1.9	499	
Dec.	9	14.7	II	$\mathrm{b}^{2} 7 \mathrm{c}$	2.1	2.2	520	
				$\mathrm{b}^{3} 6 \mathrm{c}$	2.2			
	18	15.0 -	I	$\mathrm{b}^{2} 9 \mathrm{c}$	2.7	2.7	529	
				$\mathrm{b}^{3} 8 \mathrm{c}$	2.6			
85 Jan.	9	14.4	I	$\mathrm{b}^{2} 8$ c	2.4	2.4	551	
				$\mathrm{b}^{3} 7 \mathrm{c}$	2.4			
June	4	15.9	1	$\mathrm{b}^{2} 2 \mathrm{c}$	0.6	1.1	697	
				$\mathrm{b}^{3} 3 \mathrm{c}$	1.6			
	8	16.0	I	$\mathrm{b}^{2} 0 \mathrm{c}$	0.0	0.6	701	
	15	15.7	III	$\mathrm{b}^{3} 1$ 1 $\mathrm{~b}^{2}$ 0 c	1.2 0.0	0.6	708	
	15	15.7	H	$\mathrm{b}^{3} 1 \mathrm{c}$	1.2			
	17	15.6	D	$\mathrm{b}^{2} 1 \mathrm{c}$	0.3	0.9	710	
				$\mathrm{b}^{3} 2 \mathrm{c}$	1.4			
July	6	16.1	III	$\mathrm{b}^{2} 2 \mathrm{c}$?	0.6	1.1	729	
				$\mathrm{b}^{3} 3 \mathrm{c}$?	1.6			
Sept.	14	15.6	11)	b $\mathrm{b}^{3} 5 \mathrm{c}$ 4 c	1.5	1.7	799	
Oct.	1	15.2	II	$\mathrm{b}^{2} 5 \mathrm{c}$	1.5	1.6	816	
				$\mathrm{b}^{3} 3 \mathrm{c}$	1.6			
	5	15.3	I	$\mathrm{b}^{2} 4 \mathrm{c}$	1.2	1.4	820	
				$\mathrm{b}^{3} 3 \mathrm{c}$	1.6			
	9	15.6	I	$\mathrm{b}^{2} 4 \mathrm{c}$	1.2	1.3	824	
				$\mathrm{b}^{3} 2 \mathrm{c}$	1.4			
Nov.	9	15.0	I	$\mathrm{b}^{2} 4 \mathrm{c}$	1.2	1.3	855	
Dec.	6	15.0	I	$b^{3} 2 \mathrm{c}$ $\mathrm{b}^{2} 6 \mathrm{c}$	1.4	1.8	882	
				$\mathrm{b}^{3} 4 \mathrm{c}$	1.8			
	11	15.2	I	$\mathrm{b}^{2} 5 \mathrm{c}$	1.5	1.7	09887	
				$\mathrm{b}^{3} 4 \mathrm{c}$	1.8			

$1800+$	Gr. M. T.	Sky	Comparisous	I	II	Mean	$2400000+$	Remarks
86 May	15.9	I D	$\mathrm{b}^{2} 2 \mathrm{c}$		0:6	0.9	10045	
	15.8	I D	$b^{3} 1 \mathrm{c}$ $\mathrm{b}^{2} 3 \mathrm{c}$		1.2	1.2	054	
			$b^{3} 2 \mathrm{c}$		1.4			
	15.8	III	$\mathrm{b}^{2} 4 \mathrm{c}$		1.2	1.6	056	
			$\mathrm{b}^{3} 5 \mathrm{c}$		2.0			
June	15.4	I	$\mathrm{b}^{2} 3 \mathrm{c}$		0.9	1.4	061	
			$\mathrm{b}^{3} 4 \mathrm{c}$		1.8			
	15.4	ID	$b^{3} 1 \mathrm{c}$ $\mathrm{b}^{3} 2 \mathrm{c}$		1.3 1.4	0.9	075	
Oct.	14.6	I D	$\mathrm{b}^{2} 3 \mathrm{c}$		0.9	1.4	181	
	14.5	II	b ${ }^{2} 1 \mathrm{c}$		1.8	0.9	198	
			$\mathrm{b}^{3} 2 \mathrm{c}$		1.4			
	15.0	I	$\mathrm{b}^{2} 2 \mathrm{c}$		0.6	1.1	209	
Nov. 25	13.5	II	b i^{2} 2 c		1.6 0.6	1.1	236	
Dec. $\begin{aligned} & 15 \\ & \\ & 29\end{aligned}$			$\mathrm{b}^{3} 3 \mathrm{c}$		1.6			
	14.1	I	$\mathrm{b}^{3} 4 \mathrm{c}$		1.8	1.4	256	
	14.2	I	$\mathrm{b}^{3} 5 \mathrm{c}$		2.0	1.6	270	
			$\mathrm{b}^{2} 4 \mathrm{c}$		1.2			

METHOD BY STEPS:

III. Observations made by J. G. Hagen. S. J., from 1888 to 1890.

The following observations were made at the Georgetown College Observatory, with a 5 -inch equatorial by Troughton \& Simms. The eye-piece had a power of 50 diameters, with a field of less than a degree, rather too small for the purpose. The observing list consisted almost exclusively of southern variables, which could not be well observed in more northern latitudes. Most of the results of these observations were published at the time in the Astronomical Journal.

806 o Ceti Series IV \& V.
(1900) $2^{\mathrm{n}} 14^{\mathrm{m}} 18^{\mathrm{s}}\left(+3^{\mathrm{s}} .03\right) ;-3^{\circ} 25^{\prime} .7 \quad\left(+0^{\prime} .27\right)$

Period: $331^{\mathrm{d}} .6$; Variation: $2^{\mathrm{M}}-9^{\mathrm{n}}$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
1		$-3^{\circ} 340$	0.0	[7.7] BD.
m	2	-4*379	6.0	8.0
n	5	$-2^{\circ} 396$	13.7	8.5
p	6	$-3^{\circ} 363$	15.8	8.6
r	7	$-3^{\circ} 355$	22.8	8.8
q	$-3^{\circ} 362$	24.8	[9.2] BD.

Notes:

In order to avoid confusion in the notation, the variable was designated by M , instead of the Greek letter $\%_{0}$ These few observations were made incidentally in preparing the two charts for the Atlas. The numbers under ASV. and Magn. (except those in parenthesis) are taken from the IV. Series of the Atlas.

814 S Persei Series III.
(1900) $2^{\mathrm{h}} 15^{\mathrm{m}} 41^{s} .\left(+4^{4} .27\right) ;+58^{\circ} 7^{\prime} .8 \quad\left(+0^{\prime} .28\right)$

Variation: $8 \frac{1}{2}^{\mathrm{M}}-12^{\mathrm{M}}$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
g	1	$+58^{\circ} 471$	0.0	
f	4	$+55^{\circ} 467$	3.3	8.8
e	5	$+58^{\circ} 452$	4.3	8.2
k	7	$+57^{\circ} 549$	5.3	8.5
b	18	$+57^{\circ} 557$	14.5	9.5
c	36	$\ldots \cdots \cdots$	19.1	10.9

Notes:
These observations are a continuation of those made from 1883 to 1888 , and were reduced on the same scale as the latter, although the instrument was a different one.

845
R Ceti
Series I.
(1900) $2^{\mathrm{n}} 20^{\mathrm{m}} 55^{\mathrm{c}}\left(+3^{s} .06\right) ;-0^{\circ} 37^{\prime} .8 \quad\left(+0^{\prime} .27\right)$

Period: 167 $7^{\mathrm{d}} 0$; Variation: $8^{\mathrm{M}}-13 \frac{1}{2}^{\mathrm{M}}$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
e	1	$-1^{\circ} 338$	0.0	8.0
a	2	$-0^{\circ} 267$	10.2	8.5
d	3	$-0^{\circ} 365$	14.2	8.6
f	4	$-0^{\circ} 363$	23.7	9.1
c	6	$-1^{\circ} 333$	27.1	9.4
b	7	$-1^{\circ} 339$	28.1	9.4
L	9	$\ldots \ldots \ldots$.	34.6	9.8

(1900) $2^{\mathrm{h}} 28^{\mathrm{m}} 56^{\mathrm{s}}\left(+2^{\mathrm{s}} .88\right) ;-13^{\circ} 35^{\prime} .2\left(+0^{\prime} .27\right)$

Period: $235^{\mathrm{d}} .8$; Variation: $7^{\mathrm{N}}-12^{\mathrm{N}}$.
Comparison Stars :

Obs.	ASV.	BD .	Steps	Magn.
A	1	$-12^{\circ} 481$	0.0	6.8
i	2	$13^{\circ} 492$	6.7	7.5
n	-	$13^{\circ} 493$	9.7	(8.8) BD.
m	3	$12^{\circ} 469$	10.8	8.0
h	-	$12^{\circ} 489$	14.2	(9.0)
,	-	$13^{\circ} 473$	18.8	(8.9)
g	8	$13^{\circ} 483$	22.4	8.7
f	7	$13^{\circ} 481$	24.9	8.6
B	11	$13^{\circ} 487$	34.9	9.2
e	10	$14^{\circ} 479$	35.2	9.0
d	12	$13^{\circ} 474$	41.6	9.3
a	17	$13^{\circ} 476$	46.6	9.6
b	19	$-13^{\circ} 478$	50.6	9.8
c	22	(53.6)	10.0

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1800 \& \& Gr. M. T. \& Sky \& Comparisons \& I \& .II \& Mean \& $2400000+$ \& Remarks

\hline \multirow[t]{7}{*}{89 Dec.} \& 12 \& 13.5 \& I \& 1) 1 U 2 c \& 51.6 \& 51.6 \& 51.6 \& 11349 \&

\hline \& 20 \& 15 \& III \& d 3 U 5 b 1 a \& 45.1
45.6 \& 45.3 \& 45.3 \& 357 \&

\hline \& 21 \& 14 \& I \& d2 U 3 a \& 43.6 \& 43.7 \& 44.5 \& 358 \&

\hline \& \& \& \& d 2 U 4 c \& (46.6) \& (45.6) \& \& \&

\hline \& 22 \& 14 \& I \& d 2 U 4 a \& 43.1 \& 43.3 \& 43.2 \& 359 \&

\hline \& 24 \& 13.5 \& III \& d2 U3a2c \& 43.6 \& 43.7 \& 43.7 \& 361 \&

\hline \& 26 \& 12.5 \& I \& e 4 U 2 d \& 38.4 \& 39.5 \& 39.0 \& 363 \&

\hline \multirow[t]{11}{*}{90 Jan.} \& 12 \& 13.3 \& III \& f 3 U 3 e 4 d \& 30.0 \& 30.2 \& 30.1 \& 380 \&

\hline \& 13 \& 15.5 \& I \& f 3 U 4 e \& 29.5 \& 29.3 \& 29.4 \& 381 \&

\hline \& 16 \& 15 \& I \& in 3 U 3 g
h 3 U 5 f \& 18.3
18.6 \& 18.3
18.2 \& 18.4 \& 384 \&

\hline \& 18 \& 13.3 \& III \& h2 U5f \& 18.0 \& 17.3 \& 16.8 \& 386 \&

\hline \& \& \& \& i5U3g2f,i5h \& 15.5 \& 16.5 \& \& \&

\hline \& 21 \& 15.5 \& I \& A 4 U1i \& 4.8 \& 5.4 \& 5.1 \& 389 \&

\hline \& 22 \& 15 \& I \& A 4 U0i \& 5.3 \& \& 5.3 \& 390 \&

\hline \& 23 \& 14.5 \& I \& i 2 U 3 m \& 8.2 \& 8.3 \& 8.3 \& 391 \&

\hline \& 24 \& 13.5 \& III D \& i 3 U 0 m \& 10.2 \& \& 10.2 \& 392 \& Near horizon.

\hline \& 27 \& 13.5 \& I D \& A 5 U ${ }^{\text {i }}$ (5 m \& 5.0
6.8 \& 7.4 \& 6.4 \& 395 \&

\hline \& 28. \& 12.8 \& DDD \& A 5 U 1 i \& 5.3 \& 5.6 \& 5.2 \& 396 \&

\hline \multirow[t]{5}{*}{Feb.} \& \& 13 \& I \& A 5 U 6 mm \& 4.9
4.9 \& 4.9
5.4 \& 5.2 \& 409 \&

\hline \& 12 \& 13 \& \& A 5 U 1 i \& 5.4 \& 5.6 \& 5.5 \& 411 \&

\hline \& 16 \& $13^{\text {h }}-15^{\text {n }}$ \& III \& i 2 U 8 g ! \& 11.5 \& 9.8 \& 10.7 \& 415 \&

\hline \& 18 \& / \& 111 \& i 2 U 8 g \& 11.5 \& 9.8 \& 10.7 \& 417 \& Difficult.

\hline \& 22 \& " 8 \& III D \& i 3 U 6 g \& 13.0 \& 11.9 \& 12.5 \& 421 \& Near horizon.

\hline \multirow[t]{2}{*}{Mar.} \& $$
\begin{aligned}
& 6 \\
& 6 \\
& 8
\end{aligned}
$$ \& $$
\underset{13^{\mathrm{h}}-12.8}{5^{\mathrm{n}}}
$$ \& I DDD \& i 3 U 7 g
i 10 U 2 g \& 12.5 \& 11.4
19.7 \& 12.0
19.1 \& 433
435 \& Near horizon.

\hline \& \& \& \& $110 \mathrm{U}^{2 \mathrm{~g}}$ \& \& \& \& \&

\hline \multirow[t]{3}{*}{Aug. Sept.} \& 25 \& 17.5 \& II D \& g 1 U 3 f \& 22.6 \& 23.0 \& 22.8 \& 605 \&

\hline \& +888 \& 17.1
16.3 \& ${ }_{\text {III }}^{\text {II }}$ \& i 7 U 41
i 3 U 101 \& 13.8
10.5 \& 13.7
9.7 \& 13.8
10.1 \& 619
626 \&

\hline \& 17 \& 16.3
15.3 \& I \& 13 4 U U^{101} \& 10.5 \& 9.7 \& 10.7 \& 626
628 \&

\hline \multirow[t]{7}{*}{Oct.

Nov.} \& 3 \& 14 \& I \& $\mathrm{U}=\mathrm{i}$ \& 6.7 \& \& 6.7 \& 644 \&

\hline \& 5 \& 13 \& III \& i 1 U ! \& 7.7 \& \& 7.7 \& 646 \&

\hline \& 8 \& 14.3 \& I \& $\mathrm{U}=\mathrm{i}$! \& 6.7 \& \& 6.7 \& 649 \&

\hline \& 17 \& 13.5 \& I \& A 7 U 2 i \& 5.8 \& 5.2 \& 5.5 \& 658 \&

\hline \& 21 \& 16.5 \& I \& A 6 U 2 i \& 5.3 \& 5.0 \& 5.2 \& 662 \&

\hline \& 31 \& 12.5 \& III \& i 3 U 0 n ! \& 9.7 \& \& 9.7 \& 672 \&

\hline \& 3 \& 15 \& III \& $\mathrm{i}_{5} 5 \mathrm{U} 12 \mathrm{~g}$ \& 11.0 \& 11.3 \& 10.8 \& 675 \&

\hline \multirow{9}{*}{Nov.} \& 7 \& $12^{\text {n }}-15^{\text {b }}$ \& II \& $\mathrm{U}_{\mathrm{i} 6 \mathrm{U}} \mathbf{4} 8 \mathrm{~g}$ \& 10.2
12.7 \& \& 11.9 \& 679 \&

\hline \& \& 12-15 \& \& n 3 U 4 h \& 11.5 \& 11.6 \& \& \&

\hline \& 13 \& $13^{\mathrm{h}}-14^{\mathrm{b}}$ \& II \& i 10 U 2 h 10 g \& 14.5 \& 12.9 \& 1.3.8 \& 685 \&

\hline \& \& \& \& ${ }^{1} 7 \mathrm{U} 2 \mathrm{~h}$ \& 14.5 \& 13.2 \& \& \&

\hline \& 18. \& 15.3 \& I D \& n10 10 U 8 g
h 2 U \& 17.0 \& 16.8 \& 16.4 \& 690 \&

\hline \& \& \& \& h 1.5 U \& 15.7 \& \& \& \&

\hline \& \& \& I DDD \& g 2f 4 U5 B \& 29.4 \& 29.3 \& 29.4 \& 700 \&

\hline \& 30 \& $13^{\text {b }}-15^{\text {n }}$ \& \& f7 U4B1e \& 31.4 \& 31.3 \& 31.4 \& 702 \&

\hline \& \& \& \& $$
\begin{aligned}
& f 1 \mathrm{~g} 3 \mathrm{l} \\
& \mathrm{i} 7 \mathrm{~m} 7 \mathrm{~g}, \mathrm{~h} 3 \mathrm{~m}
\end{aligned}
$$ \& \& \& \& \&

\hline
\end{tabular}

$1800+$	Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
$\begin{array}{lll}90 & \text { Dec. } & 10 \\ 13\end{array}$	$\begin{gathered} 13^{\mathrm{h}}-15^{\mathrm{h}} \\ 14 \end{gathered}$	$\frac{1}{\text { I }}$	$\begin{aligned} & \mathrm{e} 4 \mathrm{U} 3 \mathrm{~d} \\ & \mathrm{U}=\mathrm{d}! \end{aligned}$	38.9 41.6	38.9	$\begin{aligned} & 38.9 \\ & 41.6 \end{aligned}$	$\begin{array}{r} 11712 \\ 715 \end{array}$	3-in glass, difficult.

(1900) $12^{\mathrm{h}} 14^{\mathrm{m}} 27^{\mathrm{s}}\left(+3^{\mathrm{s}} .10\right) ;-18^{\circ} 42^{\prime} .0 \quad\left(-0^{\prime} .33\right)$

Period: $318^{\mathrm{d}} .5$; Variation: $7^{\mathrm{N}}-12^{\mathrm{N}}$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
a	1	$-18^{\circ} 3379$	2.0	7.4
p	-	$18^{\circ} 3380$	5.3	(7.0) BD.
b	2	$18^{\circ} 3368$	14.6	7.8
c	3	$18^{\circ} 3369$	19.3	8.0
r	-	$19^{\circ} 3466$	24.3	(8.5) BD.
	-	$17^{\circ} 3596$	27.0	(8.3) BD.
d	8	$18^{\circ} 3372$	(27)	9.5
m	4	$18^{\circ} 3362$	31.0	8.5
k	5	$18^{\circ} 3365$	31.3	8.8
n	6	$18^{\circ} 3373$	31.3	8.9
h	7	$18^{\circ} 3364$	34.3	9.2
e	11	$-18^{\circ} 3366$	(35)	10.0

*) The original has: p 2 R 1 d, which seems to be an error in recording.
(1900) $12^{\mathrm{h}} 20^{\mathrm{m}} 52^{\mathrm{s}} \quad\left(+3^{\mathrm{s}} .09\right) ;-2^{\circ} 51^{\prime} .5 \quad\left(-0^{\prime} .31\right)$

Period: $17^{\mathrm{d}} .2711$; Variation: $9^{\mathrm{N}}-10^{\mathrm{n}}$.
Comparison Stars :

Obs.	ASV.	BD.		Steps
			Magn.	
f	5	$-3^{\circ} 3458$	6.0	8.3
g	-	$3^{\circ} 3461$	10.0	$(8.5) \mathrm{BD}$.
h	8	$3^{\circ} 3460$	16.9	9.0
c	-	$2^{\circ} 3697$	(19.0)	(8.9)
m	24	$2^{\circ} 3679$	21.4	9.5
e	18	$2^{\circ} 3678$	23.6	9.4
n	23	$3^{\circ} 3463$	23.9	9.6
d	15	$2^{\circ} 3688$	27.0	9.5
p	-	$1^{\circ} 2821$	29.7	(9.5)
b	24	$-2^{\circ} 3687$	31.3	9.7

*) The original has $f 2 \mathrm{~W} 4 \mathrm{e}$, which is a poor observation, the interval $e-f$ being too large. $c 2 \mathrm{~W}$ is taken from the second observation.
${ }^{* *}$) The original has $f 5 \mathrm{~W}$ instead of $c 2 \mathrm{~W}$; see preceding note.

4816 V Virginis Series 1.
(1900) $13^{\mathrm{h}} 22^{\mathrm{m}} 38^{\circ}\left(+3^{s} .09\right) ;-2^{\circ} 39^{\prime} .2\left(-0^{\prime} .31\right)$

Period: $250^{\text {a }} .5$; Variation: $8 \frac{1}{2}^{\mathrm{N}}-<13^{\mathrm{M}}$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
i	2	$-2^{\circ} 3689$	15.7	9.1
h	-	$3^{\circ} 3460$	16.9	(8.9) BD.
k	3	$2^{\circ} 3690$	25.7	9.5
d	4	$2^{\circ} 3688$	27.0	9.6
b	6	$-2^{\circ} 3687$	31.3	9.9

Notes:

These few observations were made incidentally with those of W Virginis, and were reduced by the same scale as the latter.

$(1900) 13^{\mathrm{b}} 27^{\mathrm{m}} 47^{\mathrm{s}}\left(+3^{\mathrm{s}} .13\right) ;-6^{\circ} 40^{\prime} .8 \quad\left(-0^{\prime} .31\right)$
Period: $376^{\mathrm{d}} .4$; Variation: $7^{\mathrm{M}}-12 \frac{1}{2}^{\mathrm{N}}$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
g	1	$-5^{\circ} 3706$	0.0	$(6.6) \mathrm{BD}$.
c	2	$6^{\circ} 3839$	10.0	7.3
f	3	$6^{\circ} 3843$	21.1	8.0
d	4	$6^{\circ} 3834$	27.2	8.5
e	6	$6^{\circ} 3840$	36.2	8.8
h	5	$6^{\circ} 3832$	39.2	8.8
k	7	$6^{\circ} 3836$	45.2	9.2
n	8	$6^{\circ} 3833$	47.2	9.4
m	12	$-6^{\circ} 3835$	53.2	9.8

Notes:

The first three of these observations have a different scale of steps from those of the following year, the interval d-c being on the average only S units, or less that one-half the same interval in the general scale. This will explain the discrepancies in their reduction to the latter scale.

6132 | | R Ophinchi | Series I. |
| :---: | :---: | :---: |
| $(1900) 17^{\mathrm{n}} 2^{\mathrm{m}} 1^{\mathrm{s}}$ | $\left(+3^{\mathrm{s}} .44\right) ;-15^{\circ} 57^{\prime} .6$ | $\left(-0^{\prime} .08\right)$ |

Period: 302 2^{4}; Variation: $7 \frac{11}{2}^{n}-12^{N}$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
a	$\ldots \ldots .$.	$-16^{\circ} 4434$	10.0	$(7.5) \mathrm{BD}$.
b	$\ldots .$.	$16^{\circ} 4436$	16.1	(7.3)
c	2	$15^{\circ} 4466$	24.7	8.0
d	3	$-16^{\circ} 4426$	33.7	8.2

Notes:

When the variable is brighter than the brightest comparison star, as on September 9, 15, and 17, both forn ulas I and II can be used with a little modification. Thus on September 9 formula I requires 2 steps to be sul tracted from a and 8 from b. Formula II only requires an interchange of R and a, and will read thus:

$$
10=\mathrm{R}+2 \frac{16.1-\mathrm{R}}{8} \text {, or } \mathrm{R}=8.0
$$

and similarly for September 15 and 17.

6905 R Sagittarii Series I.
(1900) $19^{\mathrm{h}} 10^{\mathrm{m}} 49^{\mathrm{s}}\left(+3^{3} .52\right) ;-19^{\circ} 29^{\prime} .0 \quad\left(+0^{\prime} .10\right)$

Period: 268 $8^{\mathrm{d}} .7$; Variation: $7 \frac{1}{2}^{\mathrm{M}}-12 \frac{1}{2}^{\mathrm{M}}$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
g	2	$-19^{\circ} 5387$	0.0	8.0.
h	3	5398	6.7	8.1
i	5	5388	15.5	8.4
k	8	5386	25.7	8.7
1	10	5375	28.7	8.8
m	12	5384	33.7	9.0
n	21	$-19^{\circ} 5368$	42.2	9.5

Notes:

The interval $l-k$ is not determined by the observations, and was taken from the ASV., the scale of which closely agrees with the steps of these observations.

6921
S Sagittarii

Series I.

(1900) $19^{\mathrm{h}} 13^{\mathrm{m}} 35^{\mathrm{s}} \quad\left(+3^{\mathrm{s}} .51\right) ; \quad-19^{\circ} 12^{\prime} .4 \quad\left(+0^{\prime} .11\right)$

Period: $230^{\mathrm{d}} .6$; Variation: $10^{\mathrm{M}}-<14^{\mathrm{M}}$.
Comparison Stars :

Obs.	ASV.	BD.	Steps.	Magn.
q	30	$\ldots \ldots \ldots$.	0.0	10.0
p	35	$-19^{\circ} 5397$	6.3	10.2

Notes:
This variable is too faint for the instrument used, and was observed only because it is in the same field as R Sagittarii, and happened to reach its maximum brightness at the same time with the latter.

*) The limit 15 may be concluded from the last three observations (November 5-13).

7468
T Aquarii
Series I.

Period: 203 ${ }^{4} .3$; Variation: $7 \frac{1}{2}^{\mathrm{N}}-13^{\mathrm{N}}$.
Comparison Stars :

Obs.	ASV.	BD.	Steps.	Magn.
b	6	$-5^{\circ} 5396$	0.0	7.9
d	7	5383	4.0	8.2
c	9	5393	9.7	8.5
h	10	5394	18.7	9.0
k	-	5385	20.0	$(9.0) \mathrm{BD}$.
e	22	5398	20.7	10.0
f	15	5387	25.7	9.3
g	21	$-5^{\circ} 5389$	33.7	10.0

1800		Gr. M. 'T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
89 Aug.	31	15.5	1.	b 1 T 2 c	4.3	3.2	3.8	11246	
Sept.	19	15		b 2 T 3 c	4.3	3.9	4.1	265	
	21	9.2	I	b 3 T 2 c	5.3	5.6	5.5	267	
	27	8.2	I	b 4 T 1 c	6.3	7.8	7.0	273	
Oct.	10	13.2	III DDD	d 4 T T 3 e	6.9 15.7	6.9 16.0	15.9	286	
90 Sept.	15	14.3	I	f 3 T 5 g	28.7	28.7	28.7	626	
	17	15	1	f 2 T 6 g	27.7	27.7	27.7	628	
	24	15	I D2	h 5 T 3 f	23.2	23.1	23.2	635	
	26	12.8	I DDD	h3 T6f	20.7	21.1	20.9	637	
Oct.	3	14		d 4 T 1 c 5 h	8.3	8.6	8.5	644	
	5	12.8	III	d 5 c 2 T 10 h	10.2	11.2	10.7	646	$T<c!$
	8	14	I	d 5 c 2 T 8 h 3 f	10.7	11.5	11.2	649	
	14	13.3	III	d 2 T 4 c	5.8	5.9	5.9	655	
	17	13.3	I	d 5 T 3 c	7.8	7.6	7.7	658	
	21	16	I	d 3T6c	5.3	5.9	5.6	662	Near horizon.
	31			d4c3T7!	15.7	14.5	15.1	672	
Nov.	3 5	14.8 13.1	III		7.8 9.3	7.6 8.9	7.7 9.1	675 677	
	9	13	I	c 2 T 6 k 3 f	12.9	12.3	12.6	681	
	13	13.1	II	c 3.5 T 4 k 3.5 f	14.6	14.5	14.6	685	Damp.
	18	13.5	1 I	c 5 T 4 k 4 f	15.3	15.4	15.4	690	
	28	12.5	I DDD	b 2 e 3 T 2 f	23.7	23.7	23.7	700	g hardly vis.

8230 S Aquarii Series I-
(1900) $22^{\mathrm{h}} 51^{\mathrm{m}} 45^{\mathrm{a}}\left(+3^{\mathrm{s}} .22\right) ;-20^{\circ} 52^{\prime} .6 \quad\left(+0^{\prime} .32\right)$

Period: $279^{\text {d }} .7$; Variation: $8^{\mathrm{N}}-<12 \frac{1}{2}^{\mathrm{M}}$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
d	2	$-21^{\circ} 6334$	0.0	7.9
e	3	6333	8.4	8.3
a	4	6325	10.4	8.5
h	5	6341	11.1	8.8
g	-	6317	16.5	$(8.9) \mathrm{BD}$.
k	7	6342	21.0	9.4
b	10	6323	22.7	9.6
m	11	6332	25.7	9.6
c	9	6336	25.7	9.5
n	17	$-21^{\circ} 6335$	26.7	10.0

1800		Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
89 Sept.	19	$13^{\mathrm{h}}-15^{\text {n }}$	I	b 0 S 1 c	23.7		23.7	11265	
	21	15	I	b 0 S 2 c	23.2		23.2	267	
	27	14.8	I	a 5 S 3 b !	17.6	18.1	17.9	273	
	28	13-15		a 5 S 3 b	17.6	18.1	17.9	274	
Oct.	10	13	III DDD	d5S2e1a	5.7	6.0	5.9	286	
	11	13		d 5S 3 a S 2 e	6.2 6.4	6.5	6.4	287	
	15	15.7	II	d 6 S 3 e	5.7	5.6	5.7	291	
	17	14.7	II	d 6 S 3 e	5.7	5.6	5.7	293	
	19	15	III	d 6 S 3 e	5.7	5.6	5.7	295	
Nov.	3	$13^{h}-15^{\text {a }}$	II DDD	d 6 S 3 e	5.7	5.6	5.7	310	
	10	14	III D	d 5S3e	5.2	5.2	-5.2	317	
	14	15		d 5 S 4 e	4.7	4.7	4.7	321	
	28 29	${ }_{12}^{15}$	I D	e2S 1 a	9.7 11.4	9.7	9.7 11.4	335	Near horizon, difficult.
	29	12.6		e 15	11.4		11.4	336	
	30	12.2		a 3 S 7 b	14.6	14.1	14.4	337	
Dec.	1	12		a 3 S 7 b	14.6	14.1	14.4	338	
	11	14.3	I	a 5 S 5 b	16.6	16.6	16.6	348	Near horizon
	12	12.7	I	a 5 S 5 b	16.6	16.6	16.6	349	
				$\mathrm{S}=\mathrm{g}!$	16.5				
	21	12.7	1	a 4 c 3 S 3 b S 4 e !	19.6 21.7	19.6	20.3	358	
	22	13	I	g 3 S 4 b	19.1	19.2	19.2	359	
	26	12	I	g 5 S 1 b	21.6	21.7	21.7	363	Near ${ }^{\text {D }}$
90 Jan.	8	13	I	$\mathrm{S}<\mathrm{b}$			$\bigcirc 23$	376	Too low, windy.
July	7	15.2	I	$\mathrm{S}<\mathrm{a}$			>11	556	
	11	15.5	${ }_{\text {I }}$	b 2 S 4 c	23.2		23.5	560	
	14	14.3	II	$\begin{aligned} & \operatorname{losik} \\ & (\mathrm{e} 10 \mathrm{~S} 8 \mathrm{~b}) \end{aligned}$	$\underset{(16.6)}{18.6}$	$\begin{gathered} 19.6 \\ (16.4) \end{gathered}$	18.2	563	Approximate.
	16	14	I	$\begin{aligned} & \text { h } 3 \text { S } 5 \mathrm{k} \\ & \text { (S } 10 \mathrm{~b}) \end{aligned}$	$\left(\begin{array}{l} 15.1 \\ (12.7) \end{array}\right.$	14.8	14.5	565	
	18	15.5	I	h 4 S 3 g	14.3	14.2	14.3	567	
	20	14.6	D2D	h3S2g	14.3	14.3	14.3	569	
Aug.	3 6	${ }_{4} 3^{n}-15^{\text {n }}$	22D	e 7 S 5 g	13.5	12.1	13.3	583	
				e 6 S 6 g	12.5	12.5	12.5	$58 ;$	Difficult.
	12	"		e 6 S 7 g e 6 S 4 h	12.0	12.1	11.2	592	
	15	"		e6S4	10.8 11.5	10.0	11.1	595	Seeing very poor.
				e 6 S 4 h	10.8	10.0			
	23	16		e 2 a 6 S 2 h 4 g	12.8	10.9	11.9	603	
	25	17.3	II D	h 2 S 6 6	11.8	12.5	12.6	605	$\mathrm{h}>\mathrm{S}$!
Sept.	3	14.2	I	h2S 1 g !	14.3	14.7	14.5	614	
	8	17.1	III	h 4 S 4 k	16.1	16.1	17.0	619	
	9			g 2 S 4 k	17.8	18.0			
	9	14.5	III	h 6 S 4 k	17.1	17.0	17.9	620	
	15	14.3	I	g 4S6b, 4 c	18.6	19.0		626	
	17	15.3	I	g 6 S 2 k	20.8	19.9	20.4	${ }_{628}^{628}$	
Oct.	3	13.4	1	b3m3s5n	25.2	26.1	25.7	644	

Nova Aurigæ 1892

$$
\begin{gathered}
(1900) 5^{\mathrm{n}} 25^{\mathrm{m}} 34^{\mathrm{s}} \quad\left(+3^{\mathrm{s}} .85\right) ; \quad+30^{\circ} 22^{\prime} .2 \quad\left(+0^{\prime} .05\right) \\
\text { Variation: } 4 \frac{1}{2}^{\mathrm{n}}-<13^{\mathrm{m}} \\
\text { Comparison Stars : }
\end{gathered}
$$

Obs.	BD .	Steps	BD .	H.	L.	
a	$+33^{\circ} 1000$	0.0	5.1	5.1		
b	32922	6.0	5.5	5.3	\%	
χ	321024	6.9	4.8	5.4	5.00	
c	331013	11.1	5.9	5.5		
d	30963	18.0	6.0	5.9	5.70	
e	30898	24.7	6.2	6.2	5.86	
g	$29 \quad 947$	29.4	6.2	6.4		
h	29899	36.2	7.0	6.6		
k	$29 \quad 911$	53.7	7.5	7.4		
α	$29-923$	59.7	7.8	7.8		
β	$29 \quad 921$	66.7	8.5	8.3		
γ	$30 \quad 912$	68.2	8.5	8.4		
δ	30913	75.2	8.7	8.9		
ε	$30 \quad 914$	85.4	9.4	9.5		
ζ	30920	91.7 94.2	9.5	9.9 10.0		South pr n
η	+30 924	98.9	9.5	10.3		
ϑ	102.9	10.6		North foll. Nova.

Notes:
The comparison star f, which was used only a few times with the naked eye, has been discarded in the reductions. It consists of two components BD. $+29^{\circ} 953$ and 954 , of magnitude 7.0 and 7.5 respectively, and for this reason its estimates do not agree well among themselves. The space line across the above table separates the naked-eye comparison stars from the telescopic ones. The magnitudes under H were computed by the formulas (see Astr. J. XI, 1892, p. 172):

$$
\begin{aligned}
& \text { Magn. }=6.0+0.045(\text { Steps }-20.7) \text { for opera glass, } \\
& \text { Magn. }=8.6+0.062(\text { Steps }-71.0) \text { for telescope. }
\end{aligned}
$$

The three magnitudes under L are those upon which Lindemann based his definitive light curve of the Nova in the Mélanges Math. et Astr. (Petersburg. Bulletin, t. VII, p. 331).

| Gr. M. T. Sky | Comparisons | I | II | Mean |
| :--- | :--- | :--- | :--- | :--- | :--- |

METHOD BY STEPS:

$1800+$		Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks

IV. Observations made by James F. Dawson, S. J., from I889 to 1890.

These observations were made at the Georgetown College Observatory. The instrument employed was a 3 -inch telescope, mounted equatorially but not sheltered under a dome. It had to be carried every evening to a pier in the open air, and adjusted. The variables selected are all southern except Algol, which was observed for practice. The letters (D) and (H) after an observation designate the Rev. J. Daugherty and Hagen respectively who occasionally took part in the observations. The results have been published in the Astronomical Journal.

100
T Ceti Series V
(1900) $0^{\mathrm{h}} 16^{\mathrm{m}} 42^{\mathrm{s}}\left(+3^{\mathrm{s}} .04\right) ;-20^{\circ} 36^{\prime} .7 \quad\left(+0^{\prime} .33\right)$

Period: Irreg.; Variation: $5^{\mathrm{M}}-6 \frac{1}{2}^{\mathrm{M}}$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
d	8	$-19^{\circ} 21$	0.0	4.8
a	9	$21^{\circ} 24$	10.0	6.4
b	10	$19^{\circ} 30$	11.0	6.6
c	$\ldots . .$.	$-20^{\circ} 48$	14.5	$(7.8) \mathrm{BD}$.

Notes:
Since this star is "irregularly periodic," the maximum brightness which can be deduced from these observations will be of special importance.

The observations indicate a slight change in the relative brightness of the two comparison stars a and b.

$1800+$		Gr. M. T.	Sky	Comparisons	I	II	Mean	$2400000+$	Remarks
89 Sept.	22	15.5	II	b 1 T 2 c	12.3	12.2	12.3	11268	
	27	14.5	I	b0 T 2 c	11.8		11.8	11273	*)
	28	13.5	I	b 2 T 2 c , or	12.8	12.8	12.5	274	*)
Oct.				b1T2c ${ }_{\text {a }}$	12.2 11.0	12.2			Better.
	11	14.0	2	a 2 T 1 b (H)	11.0 11.0	10.7	10.8	7	
				T 4 c (H)	10.5				
	15	15.5	I	a 2 T 1 b	11.0	10.7	10.6	291	
				T 5 c	9.5				
	17	15.5	II	a 1 T1b	10.5	10.5	10.5	293	
	18	16.5	III	a 1 T 1 b	10.5	10.5	10.5	294	
	19	15	III	a 1 T1b	10.5	10.5	10.5	295	
Nov.	3	13.5	DDD	d9T1a2b	9.0	9.0	8.5	310	
				d8T2a 1 b (H)	8.0	8.0			
	10	14	D	d7T3a1b	7.0 6.0	7.0 6.0	6.5	317	
	14	15.5	II	d7T3a1b	7.0	7.0	7.0	321	
	15	16.0	I	d 6 T 4 al 1 b	6.0	6.0	6.0	322	
	16	14.0	III	d6T4a 1 b	6.0	6.0	6.0	323	
	23	15.0	I	d5T5a0b	5.0	5.0	5.0	330	
	25	15.5	1	d5T5b1a	5.0	5.0	5.0	332	
	28	15.5	II	d 6 T 5a 1 b	5.5	5.5	5.5	335	
	30	14.0	D^{2}	d5T5a1b	5.0	5.0	5.0	337	
Dec.	1 2	14.5 14.5	D		4.0 3.0	4.0 3.0	4.0 3.0	338 339	
	4	14.5	D	d 4 T 6 a	4.0	4.0	4.0	341	
	11	14.5	1 I	d 3 T 7 a 1 b	3.0	3.0	3.0	348	
	12	12.5	I	d 3 T 7 a	3.0	3.0	3.0	349	
	13	14.3	II	d4T6a0b	4.0	4.0	4.0	350	
	14		II	d 3 T 7 a	3.0	3.0	3.0	351	
	20	14.3	I	d 4 T 6 a	4.0	4.0	4.0	357	
	21	14.5	II	d 4 T 6 b	4.0	4.0	4.0	358	
	22	13.5	II	d 3T7a(?)	3.0	3.0	3.0	359	
	23	14.0	II	d 4T6a	4.0	4.0	4.0	360	
	24	14.0	III	d 3 T 7 a 0 b	3.0	3.0	3.0	- 361	
	26			d3T7a0b	3.0	3.0	3.0	- 363	
90 Jan.	8 12	15.0	DDD	d 4T6a0b	4.0 5.5	4.0 5.5	4.0 5.5	376 380	
	13	13.0	I	d 6 T 4 b 1 a	6.5	6.6	6.6	381	
	16			d 6 T4b1a	6.5	6.6	6.6	384	
	17		III	d6T4a0b	6.0	6.0	6.0	385	
	21		II	d 7 T 4 b 1 a	7.0	7.0	7.0	389	
	27 28		${ }_{D}$		6.5 7.0	6.6 7.0	6.6 7.0	395 396	
	28)						

*) The original has d instead of c on both nights. Considering the observations before and after, and the magnitude of d, the correction becomes almost certain.
$(1900) 3^{\mathrm{h}} 1^{\mathrm{m}} 40^{\mathrm{s}}\left(+3^{\mathrm{s}} .89\right) ;+40^{\circ} 34^{\prime} .2 \quad\left(+0^{\prime} .23\right)$
Period: $2^{\mathrm{a}} 20^{\mathrm{h}} 48^{\mathrm{m}} .9$; Variation: $2 \frac{1}{2}^{\mathrm{N}}-3 \frac{1}{2}^{\mathrm{N}}$.
Comparison Stars:

Obs.	ASV.	BD.	Steps	Magn.
γ Persei	19	$+52^{\circ} 654$	0.0	3.0
o "	26	$47^{\circ} 876$	3.0	3.1
κ	23	$44^{\circ} 631$	8.0	4.1
r Androm.	11	$41^{\circ} 395$	0.0	2.3
ζ Persei	30	$31^{\circ} 666$	9.0	2.9
o "	26	$47^{\circ} 876$	10.4	3.1
α Triang.	37	$28^{\circ} 312$	12.4	3.6
ρ Persei	20	$38^{\circ} 630$	16.4	Var.
κ "	23	$+44^{\circ} 631$	22.2	4.1

Notes:

The two scales of comparison stars refer to the two evenings on which the observations were made. The latter were intended only as an exercise in estimating differences in magnitude, but may be useful as a confirmation of simultaneous observations of the same minima made elsewhere.

(1900) $4^{\mathrm{n}} 55^{\mathrm{m}} 3^{\mathrm{s}}\left(+2^{\mathrm{s}} .73\right) ;-14^{\circ} 57^{\prime} .4 \quad\left(+0^{\prime} .09\right)$

Period: $436^{\mathrm{d}} .1$; Variation: $6 \frac{1}{2}^{\mathrm{N}}-8 \frac{1}{2}^{\mathrm{N}}$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
e	1	$-14^{\circ} 1003$	0.0	6.7
a	2	$15^{\circ} 910$	6.0	7.6
b	9	$14^{\circ} 1005$	13.0	8.6
c	12	$15^{\circ} 912$	16.0	8.9
d	20	$-14^{\circ} 1009$	21.0	9.4

Notes:
Observations of this star are difficult both on account of its redness and of the length of its period. The following observations will give the ascending branch of the light curve, and may serve as a supplement to observations made elsewhere.

2610 R Canis Maioris Series V.
(1900) $7^{\mathrm{h}} 14^{\mathrm{m}} 56^{\mathrm{s}}\left(+2^{\mathrm{s}} .70\right) ;-16^{\circ} 12^{\prime} .4$ ($-0^{\prime} .11$)

Period: $1^{\mathrm{d}} 3^{\mathrm{h}} 15^{\mathrm{m}} .8$; Variation: $6^{\mathrm{M}}-6 \frac{1}{2}^{\mathrm{m}}$.
Comparison Stars.

Obs.	ASV.	BD.	Steps	Magn.
a	28	$-15^{\circ} 1734$	$0.0,0.0,0.0$ b	-
$-15^{\circ} 1732$	$6.8,7.4,9.7$	5.9 HP $(6.8) \mathrm{BD}$.		

Notes:
The three scales in the column "Steps" refer to the three Minima. A mean scale would not represent the observations as well as these deduced from the three sets separately. A glance at Chart VII of Series V. of the Atlas shows that better comparison stars than b could have been ehosen.

2676 U Monocerotis Series IV.

(1900) $7^{\mathrm{h}} 26^{\mathrm{m}} 1^{\mathrm{s}}\left(+2^{\mathrm{s}} .86\right) ;-9^{\circ} 34^{\prime} .0 \quad\left(-0^{\prime} .12\right)$

Period: $46^{\mathrm{d}} .10$; Variation : $6 \frac{1}{2}^{\mathrm{M}}-7^{\mathrm{M}}$.
Comparison Stars :

Obs.	ASV.	BD.	Steps	Magn.
a	1	$-10^{\circ} 2067$	0.0	5.8
b	3	$9^{\circ} 2086$	5.2	6.6
c	4	$9^{\circ} 2069$	7.2	6.8
e	-	$9^{\circ} 2043$	10.2	$(7.0) \mathrm{BD}$.
f	8	-92084	16.2	7.8

*) Perhaps: a 5 U 1 b ?

CONTENTS.

List of the 52 Variable Stars Observed.

Star		Section	Page		Star	Section	Page
100	T Ceti	IV	136	4847	S Virginis	III	125
320	U Cephei	I	6	5157	S Bootis	I	43
782	R Arietis	II	9	5374	¢ Libræ	II	87
806	- Ceti	III	114	5484	U Coronæ	I	46
814	S Persei	I, III	13, 115	5501	S Serpentis	I	49
845	R Ceti	III	116	5504	S Coronæ	I	51
893	U Ceti	III	118	5770	R Herculis	I	54
976	T A Arietis	1	17	5950	W Herculis	I	56
1090	β Persei	I, IV	21, 138	6044	S Herculis	I	58
1222	R Persei	I	23	6132	R Ophinchi	III	127
1411	2 Tauri	II	80	6181	a Herculis	II	89
1771	R Leporis	IV	140	6202	u Herculis	II	92
1855	R Aurigæ	I	26	6512	T Herculis	I	61
2098	${ }^{\circ}$ Orionis	II	82	6758	β Lyræ	II	94
2100	U Orionis	I	29	6905	R Sagittarii	III*	128
2509	\% Geminorum	II -	84	6921	S Sagittarii	III	129
2539	R Canis Min.	I	31	7045	R Cygni	I	63
2610	R Canis Mai.	IV	142	7106	S Vulpeculæ	I	66
2676	U Monocerotis	IV	144	7120	χ Cygni	I	70
3060	U Cancri	I	34	7124	η Aquilæ	II	97
3109	S Cancri	I	35	7257	R Sagittæ	I	72
3477	R Leonis Min.	I	39	7261	R Delphini	I	76
3825	R Ursæ Mai.	I	40	7468	T Aquarii	III	130
4407	R Corvi	III	120	7803	μ Cephei	II	99
4805	W Virginis	III	- 122	8073	${ }^{\text {o }}$ Cephei	II	103
4816	V Virginis	III	124	8230	S Aquarii	III	131

List of 5 Stars not Strictly variable.

Star	Section	Page	Star	Section	Page
Nova Andromedæ Nova Aurigæ δ Serpentis	I	78	(W) Bootis	II	107
133	P Cygni	II	1 II		

Additions and Corrections.
Note to page 4: In case of a few variables occurring in Series IV the designations and magnitudes of the comparison stars have been inserted from the MS. of that Series, which is now nearly ready for print.

Page	$1800+$		Columns	Corrections.
10	83	Mar. 31	Mean	insert: >22
53		" 17	،	read: 4.7
113	87	Jan. 28	I "	insert: 2.0
121		May 3	I ،	cancel second 16.5
141		Mar. 23	I. "	insert: 0.0

\qquad

LIbrary of the university of california

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed.
This book is DUE on the last date stamped below.
AUG 61952
N / A
IBRARY OF

LIBRARY OF THE UNIVER

ORHIA LIBRARY OF THE UNIVER

जncict

$$
\begin{aligned}
& \text { (111) (11) (11) (11) } \\
& \text { (11) (11) (11) (11) (11) } \\
& \text { (11) (11) (11) (11) } 11 \\
& \text { (11) (11) (112) (112) } \\
& \text { (11) }(11)(11)=212) \\
& \text { (112) (11) (11) (11) (11) } \\
& \text { (11) (11) (11) ((12) (11) }
\end{aligned}
$$

